Våre poenggivende vitenskapelige publikasjoner

Listen inneholder vitenskapelige artikler, bøker og kapitler som er publisert i poenggivende tidsskrifter og forlag. Det nasjonale registeret over vitenskapelige tidsskrifter er utgangspunktet for hvilke vitenskapelige publikasjoner som gir uttelling i finansieringssystemet. Listen er sortert etter siste registrerte publikasjon.

2019 (74)

Til dokument

Sammendrag

Despite sophisticated mathematical models, the theory of microevolution is mostly treated as a qualitative rather than a quantitative tool. Numerical measures of selection, constraints, and evolutionary potential are often too loosely connected to theory to provide operational predictions of the response to selection. In this paper, we study the ability of a set of operational measures of evolvability and constraint to predict short‐term selection responses generated by individual‐based simulations. We focus on the effects of selective constraints under which the response in one trait is impeded by stabilizing selection on other traits. The conditional evolvability is a measure of evolutionary potential explicitly developed for this situation. We show that the conditional evolvability successfully predicts rates of evolution in an equilibrium situation, and further that these equilibria are reached with characteristic times that are inversely proportional to the fitness load generated by the constraining characters. Overall, we find that evolvabilities and conditional evolvabilities bracket responses to selection, and that they together can be used to quantify evolutionary potential on time scales where the G‐matrix remains relatively constant.

Til dokument

Sammendrag

We examine the origins, implications, and consequences of yield-based N fertilizer management. Yield-based algorithms have dominated N fertilizer management of corn (Zea mays) in the United States for almost 50 yr, and similar algorithms have been used all over the world to make fertilizer recommendations for other crops. Beginning in the mid-1990s, empirical research started to show that yield-based rules-of-thumb in general are not a useful guide to fertilizer management. Yet yield-based methods continue to be widely used, and are part of the principal algorithms of nearly all current “decision tool” software being sold to farmers for N management. We present details of the theoretical and empirical origins of yield-based management algorithms, which were introduced by George Stanford (1966, 1973) as a way to make N fertilizer management less reliant on data. We show that Stanford’s derivation of his “1.2 Rule” was based on very little data, questionable data omissions, and negligible and faulty statistical analysis. We argue that, nonetheless, researchers, outreach personnel, and private-sector crop management consultants were obliged to give some kind of N management guidance to farmers. Since data generation is costly, it is understandable that a broad, “ball park” rule-of-thumb was developed, loosely based on agronomic principles. We conclude by suggesting that technology changes now allow for exciting new possibilities in data-intensive fertilizer management research, which may lead to more efficient N management possibilities in the near future.

Til dokument

Sammendrag

In organic plant production, nitrogen (N) availability is often a growth-limiting factor. Under such conditions, off-farm waste-derived nutrient resources may be an alternative to meet the N demand. In this study, we described a production method for a shrimp shell (SS) pellet product and evaluated the N fertiliser effect and N recovery efficiency (NRE) in a controlled climate pot experiment with potatoes. The experiment was set up with low, medium and high N levels of SS pellets in comparison with a standard mineral fertiliser (MF) at 9°C, 15°C and 21°C. In a separate study, we examined the loss of N as N2O from SS pellets in comparison with SS powder in a 100 days incubation experiment. The results documented the possibility to formulate a fertiliser pellet product from SS, and that SS pellets were an effective N fertiliser in potato at all growth temperatures. Nevertheless, a slightly slower development and lower tuber yields than for MF indicated a delayed N-availability from SS pellet fertiliser. NRE after use of MF was around 90%, and about 70% for the different levels of SS pellets. The incubation experiment showed a higher rate of available N for SS powder than for pellets (67% and 39%, respectively) after 100 days of incubation at constant humidity and temperature. This difference was attributed to a lower degree of dissolved materials and a higher rate of denitrification and N2O emissions for pellets than for powder, probably caused by differences in physical properties, occurrence of anoxic hotspots and higher microbial activity around and inside the SS pellets.

Til dokument

Sammendrag

To meet increasing demand for animal protein, swine have been raised in large Chinese farms widely, using antibiotics as growth promoter. However, improper use of antibiotics has caused serious environmental and health risks, in particular Antimicrobial resistance (AMR). This paper reviews the consumption of antibiotics in swine production as well as AMR and the development of novel antibiotics or alternatives in China. The estimated application of antibiotics in animal production in China accounted for about 84240 tons in 2013. Overuse and abuse of antibiotics pose a great health risk to people through food-borne antibiotic residues and selection for antibiotic resistance. China unveiled a national plan to tackle antibiotic resistance in August 2016, but more support is needed for the development of new antibiotics or alternatives like plant extracts. Antibiotic resistance has been a major global challenge, so international collaboration between China and Europe is needed.

Til dokument

Sammendrag

The recalcitrance bottleneck of lignocellulosic materials presents a major challenge for biorefineries, including second-generation biofuel production. Because of their abundance in the northern hemisphere, softwoods, such as Norway spruce, are of major interest as a potential feedstock for biorefineries. In nature, softwoods are primarily degraded by basidiomycetous fungi causing brown rot. These fungi employ a non-enzymatic oxidative system to depolymerize wood cell wall components prior to depolymerization by a limited set of hydrolytic and oxidative enzymes. Here, it is shown that Norway spruce pretreated with two species of brown-rot fungi yielded more than 250% increase in glucose release when treated with a commercial enzyme cocktail and that there is a good correlation between mass loss and the degree of digestibility. A series of experiments was performed aimed at mimicking the brown-rot pretreatment, using a modified version of the Fenton reaction. A small increase in digestibility after pretreatment was shown where the aim was to generate reactive oxygen species within the wood cell wall matrix. Further experiments were performed to assess the possibility of performing pretreatment and saccharification in a single system, and the results indicated the need for a complete separation of oxidative pretreatment and saccharification. A more severe pretreatment was also completed, which interestingly did not yield a more digestible material. It was concluded that a biomimicking approach to pretreatment of softwoods using brown-rot fungal mechanisms is possible, but that there are additional factors of the system that need to be known and optimized before serious advances can be made to compete with already existing pretreatment methods.

Til dokument

Sammendrag

Actors who seek to restrict scientists’ academic freedom often believe they have legitimate reasons for doing so, and this belief often relies on misunderstandings regarding the nature and rationale of freedom in science. This chapter explains principles of freedom in science, why these principles matter, and how they can be protected when interests conflict. The authors distinguish between four freedoms in science: freedom of subject, freedom of source, freedom of interpretation, and freedom of speech. These freedoms each serve their scientific purpose and are – each to their own degree – important to the legitimacy of science. The authors argue that the freedoms of interpretation and speech, especially, must be absolute in science. This chapter delves particularly into the freedom of speech, because interested parties frequently attack this freedom when they fight over knowledge presented to the public. The authors draw on their experiences from the Norwegian scientific community to exemplify how problems of academic freedom may arise and eventually be solved.

Sammendrag

Global Forest Watch (GFW) provides a global map of annual forest cover loss (FCL) produced from Landsat imagery, offering a potentially powerful tool for monitoring changes in forest cover. In managed forests, FCL primarily provides information on commercial harvesting. A semi-autonomous method for providing data on the location and attributes of harvested sites at a landscape level was developed which could significantly improve the basis for catchment management, including risk mitigation. FCL in combination with aerial images was used for detecting and characterising harvested sites in a 1607 km2 mountainous boreal forest catchment in south-central Norway. Firstly, the forest cover loss map was enhanced (FCLE) by removing small isolated forest cover loss patches that had a high probability of representing commission errors. The FCLE map was then used to locate and assess sites representing annual harvesting activity over a 17-year period. Despite an overall accuracy of >98%, a kappa of 0.66 suggested only a moderate quality for detecting harvested sites. While errors of commission were negligible, errors of omission were more considerable and at least partially attributed to the presence of residual seed trees on the site after harvesting. The systematic analysis of harvested sites against aerial images showed a detection rate of 94%, but the area of the individual harvested site was underestimated by 29% on average. None of the site attributes tested, including slope, area, altitude, or site shape index, had any effect on the accuracy of the area estimate. The annual harvest estimate was 0.6% (standard error 12%) of the productive forest area. On average, 96% of the harvest was carried out on flat to moderately steep terrain (<40% slope), 3% on steep terrain (40% to 60% slope), and 1% on very steep terrain (>60% slope). The mean area of FCLE within each slope category was 1.7 ha, 0.9 ha, and 0.5 ha, respectively. The mean FCLE area increased from 1.0 ha to 3.2 ha on flat to moderate terrain over the studied period, while the frequency of harvesting increased from 249 to 495 sites per year. On the steep terrain, 35% of the harvesting was done with cable yarding, and 62% with harvester-forwarder systems. On the very steep terrain (>60% slope), 88% of the area was harvested using cable yarding technology while harvesters and forwarders were used on 12% of the area. Overall, FCL proved to be a useful dataset for the purpose of assessing harvesting activity under the given conditions.

Til dokument

Sammendrag

Premise of the Study Fungal diversity (richness) trends at large scales are in urgent need of investigation, especially through novel situations that combine long‐term observational with environmental and remotely sensed open‐source data. Methods We modeled fungal richness, with collections‐based records of saprotrophic (decaying) and ectomycorrhizal (plant mutualistic) fungi, using an array of environmental variables across geographical gradients from northern to central Europe. Temporal differences in covariables granted insight into the impacts of the shorter‐ versus longer‐term environment on fungal richness. Results Fungal richness varied significantly across different land‐use types, with highest richness in forests and lowest in urban areas. Latitudinal trends supported a unimodal pattern in diversity across Europe. Temperature, both annual mean and range, was positively correlated with richness, indicating the importance of seasonality in increasing richness amounts. Precipitation seasonality notably affected saprotrophic fungal diversity (a unimodal relationship), as did daily precipitation of the collection day (negatively correlated). Ectomycorrhizal fungal richness differed from that of saprotrophs by being positively associated with tree species richness. Discussion Our results demonstrate that fungal richness is strongly correlated with land use and climate conditions, especially concerning seasonality, and that ongoing global change processes will affect fungal richness patterns at large scales.

Til dokument

Sammendrag

Habitat discontinuity, anthropogenic disturbance, and overharvesting have led to population fragmentation and decline worldwide. Preservation of remaining natural genetic diversity is crucial to avoid continued genetic erosion. Brown trout (Salmo trutta L.) is an ideal model species for studying anthropogenic influences on genetic integrity, as it has experienced significant genetic alterations throughout its natural distribution range due to habitat fragmentation, overexploitation, translocations, and stocking. The Pasvik River is a subarctic riverine system shared between Norway, Russia, and Finland, subdivided by seven hydroelectric power dams that destroyed about 70% of natural spawning and nursing areas. Stocking is applied in certain river parts to support the natural brown trout population. Adjacent river segments with different management strategies (stocked vs. not stocked) facilitated the simultaneous assessment of genetic impacts of dams and stocking based on analyses of 16 short tandem repeat loci. Dams were expected to increase genetic differentiation between and reduce genetic diversity within river sections. Contrastingly, stocking was predicted to promote genetic homogenization and diversity, but also potentially lead to loss of private alleles and to genetic erosion. Our results showed comparatively low heterozygosity and clear genetic differentiation between adjacent sections in nonstocked river parts, indicating that dams prevent migration and contribute to genetic isolation and loss of genetic diversity. Furthermore, genetic differentiation was low and heterozygosity relatively high across stocked sections. However, in stocked river sections, we found signatures of recent bottlenecks and reductions in private alleles, indicating that only a subset of individuals contributes to reproduction, potentially leading to divergence away from the natural genetic state. Taken together, these results indicate that stocking counteracts the negative fragmentation effects of dams, but also that stocking practices should be planned carefully in order to ensure long‐term preservation of natural genetic diversity and integrity in brown trout and other species in regulated river systems.

Til dokument

Sammendrag

Climate change has altered global precipitation patterns and has led to greater variation in hydrological conditions. Wetlands are important globally for their soil carbon storage. Given that wetland carbon processes are primarily driven by hydrology, a comprehensive understanding of the effect of inundation is needed. In this study, we evaluated the effect of water level (WL) and inundation duration (ID) on carbon dioxide (CO2) fluxes by analysing a 10‐year (2008–2017) eddy covariance dataset from a seasonally inundated freshwater marl prairie in the Everglades National Park. Both gross primary production (GPP) and ecosystem respiration (ER) rates showed declines under inundation. While GPP rates decreased almost linearly as WL and ID increased, ER rates were less responsive to WL increase beyond 30 cm and extended inundation periods. The unequal responses between GPP and ER caused a weaker net ecosystem CO2 sink strength as inundation intensity increased. Eventually, the ecosystem tended to become a net CO2 source on a daily basis when either WL exceeded 46 cm or inundation lasted longer than 7 months. Particularly, with an extended period of high‐WLs in 2016 (i.e., WL remained >40 cm for >9 months), the ecosystem became a CO2 source, as opposed to being a sink or neutral for CO2 in other years. Furthermore, the extreme inundation in 2016 was followed by a 4‐month postinundation period with lower net ecosystem CO2 uptake compared to other years. Given that inundation plays a key role in controlling ecosystem CO2 balance, we suggest that a future with more intensive inundation caused by climate change or water management activities can weaken the CO2 sink strength of the Everglades freshwater marl prairies and similar wetlands globally, creating a positive feedback to climate change.

Til dokument

Sammendrag

Aim Polar and alpine ecosystems appear to be particularly sensitive to increasing temperatures and the altered precipitation patterns linked to climate change. However, little is currently known about how these environmental drivers may affect edaphic organisms within these ecosystems. In this study, we examined communities of plant root‐associated fungi (RAF) over large biogeographical scales and along climatic gradients in the North Atlantic region in order to gain insights into the potential effects of climate variability on these communities. We also investigated whether selected fungal traits were associated with particular climates. Locations Austria, Scotland, Mainland Norway, Iceland, Jan Mayen and Svalbard. Taxa Root fungi associated with the ectomycorrhizal and herbaceous plant Bistorta vivipara. Methods DNA metabarcoding of the ITS1 region was used to characterize the RAF of 302 whole plant root systems, which were analysed by means of ordination methods and linear modelling. Fungal spore length, width, volume and shape, as well as mycelial exploration type (ET) of ectomycorrhizal (ECM) basidiomycetes were summarized at a community level. Results The RAF communities exhibited strong biogeographical structuring, and both compositional variation as well as fungal species richness correlated with annual temperature and precipitation. In accordance with general island biogeography theory, the least species‐rich RAF communities were found on Jan Mayen, a remote and small island in the North Atlantic Ocean. Fungal spores tended to be more elongated with increasing latitude. We also observed a climate effect on which mycelial ET was dominating among the ectomycorrhizal fungi. Main conclusions Both geographical and environmental variables were important for shaping root‐associated fungal communities at a North Atlantic scale, including the High Arctic. Fungal OTU richness followed general biogeographical patterns and decreased with decreasing size and/or increasing isolation of the host plant population. The probability of possessing more elongated spores increases with latitude, which may be explained by a selection for greater dispersal capacity among more isolated host plant populations in the Arctic.

Sammendrag

The objective of this study was to assess the use of unmanned aerial vehicle (UAV) data for modelling tree density and canopy height in young boreal forests stands. The use of UAV data for such tasks can be beneficial thanks to the high resolution and reduction of the time spent in the field. This study included 29 forest stands, within which 580 clustered plots were measured in the field. An area-based approach was adopted to which random forest models were fitted using the plot data and the corresponding UAV data and then applied and validated at plot and stand level. The results were compared to those of models based on airborne laser scanning (ALS) data and those from a traditional field-assessment. The models based on UAV data showed the smallest stand-level RMSE values for mean height (0.56 m) and tree density (1175 trees ha−1 ). The RMSE of the tree density using UAV data was 50% smaller than what was obtained using ALS data (2355 trees ha−1 ). Overall, this study highlighted that the use of UAVs for the inventory of forest stands under regeneration can be beneficial both because of the high accuracy of the derived data analytics and the time saving compared to traditional field assessments.

Til dokument

Sammendrag

Cereal cyst nematode (CCN, Heterodera avenae) presents severe challenges to wheat (Triticum aestivum L.) production worldwide. An investigation of the interaction between wheat and CCN can greatly improve our understanding of how nematodes alter wheat root metabolic pathways for their development and could contribute to new control strategies against CCN. In this study, we conducted transcriptome analyses of wheat cv. Wen 19 (Wen19) by using RNA-Seq during the compatible interaction with CCN at 1, 3 and 8 days past inoculation (dpi). In total, 71,569 transcripts were identified, and 10,929 of them were examined as differentially expressed genes (DEGs) in response to CCN infection. Based on the functional annotation and orthologous findings, the protein phosphorylation, oxidation-reduction process, regulation of transcription, metabolic process, transport, and response process as well as many other pathways previously reported were enriched at the transcriptional level. Plant cell wall hydrolysis and modifying proteins, auxin biosynthesis, signalling and transporter genes were up-regulated by CCN infection to facilitate penetration, migration and syncytium establishment. Genes responding to wounding and jasmonic acid stimuli were enriched at 1 dpi. We found 16 NBS-LRR genes, 12 of which were down-regulated, indicating the repression of resistance. The expression of genes encoding antioxidant enzymes, glutathione S-transferases and UDP-glucosyltransferase was significantly up-regulated during CCN infection, indicating that they may play key roles in the compatible interaction of wheat with CCN. Taken together, the results obtained from the transcriptome analyses indicate that the genes involved in oxidation-reduction processes, induction and suppression of resistance, metabolism, transport and syncytium establishment may be involved in the compatible interaction of Wen 19 with CCN. This study provides new insights into the responses of wheat to CCN infection. These insights could facilitate the elucidation of the potential mechanisms of wheat responses to CCN.

Til dokument

Sammendrag

Soil fertility building measures should be explored at the short and long-term for an adequate evaluation of their impact on sustaining yields and of its environmental consequences in crop rotations under organic farming. For such a purpose, process-based crop models are potential useful tools to complement and upscale field observations under a range of soil and climatic conditions. Organic rotations differ in soil fertility dynamics in comparison to conventional farming but very few modelling studies have explicitly considered this specific situation. Here, we evaluate the FASSET model to predict the effects of different fertility management options in organic crop rotations on dry matter (DM) and nitrogen (N) yield, and soil N dynamics, including N2O emissions. For that, we used data from seven short and long-term field experiments in different agro-climatic environments in Europe (Norway, Denmark, Poland, Switzerland, Italy and Spain) including climate, soil and management data. Soil fertility building measures covered fertilization type, green manures, cover crops, tillage, crop rotation composition and management (organic or conventional). Model performance was evaluated by comparing observed and simulated values of crop DM and N yield, soil mineral N and nitrous oxide (N2O) emissions using five complementary statistical indices. The model closely reproduced most observed DM and N yield trends and effects of soil fertility building measures in arable crops, particularly in cereals. Contrary, yields of grass-clover, especially N, were generally reproduced with low degree of accuracy. Model performance for simulating soil mineral N depended on site and the availability of soil and management information. Although high uncertainty was associated to the simulation of soil N dynamics, differences of cumulative N2O emissions between fertility building measures were reflected in model outputs. Aspects for modelling improvement include cover crop growth and decomposition, biological N fixation (BNF) or weed and pest soil-crop interactions. It is concluded that FASSET can be successfully used to investigate the impact of fertilization type, green manures, tillage and management (organic or conventional) on crop productivity and to a certain extent on soil N dynamics including soil N2O emissions at different soils and climates in organic farming in Europe.

Til dokument

Sammendrag

Background To improve plant phosphorus (P)-acquisition efficiency to secure sustainable food production, an important step is to increase the concentration of plantavailable P in the rhizosphere. Root exudation of organic anions is a key strategy in mobilizing less-available soil P. Scope This review covers how organic anions (carboxylates) mobilize soil P and research methodologies applied. It then discusses the root-release of organic anions induced by low P availability and their contribution to soil P mobilization and plant P acquisition, and highlights the impact, challenges and perspectives in this research area. Conclusions The release of organic anions is increased considerably in some plant species, but very little in others under low P availability. Rhizosphere organic anions play important roles in increasing plantavailable P, but the contribution is greatly affected by many factors. In future research, improved and ecologically meaningful root exudation sampling methods, the use of mature leaf manganese (Mn) concentration or total 14C exudation as a proxy for rhizosphere carboxylates, case-by-case field experiments, molecular mechanisms underpinning organic anion biosynthesis and efflux under low P availability warrant further attention. Finally, carbon costs and multiple root trait combinations (e.g., root hairs plus root exudation) should be considered in crop breeding programs to generate more P-efficient cultivars.

Sammendrag

Measures designed to control erosion serve two purposes: on site (reduce soil loss) and off site (reduce sediment delivery to streams and lakes). While these objectives often coincide or at least are complementary, they could result in different priority areas when spatial planning is concerned. Prioritising for soil loss reduction at the field level will single out areas with high erosion risk. When sediment flux at the catchment scale is concerned, sediment pathways need to be identified in ex ante analyses of soil conservation plans. In Norway, different subsidy schemes are in place to reduce the influx of solutes and sediments to the freshwater system. Financial support is given to agronomic measures, the most important of which is reduced autumn tillage where areas with higher erosion risk receive higher subsidies. The objectives of this study are (1) to assess the use of an index of connectivity to estimate specific sediment yields, and (2) to test whether conservation measures taken in critical source areas are more effective than those taken at where erosion risk levels are the highest. Different modelling approaches are combined to assess soil loss at catchment level from sheet and gully erosion and soil losses through the drainage system. A calibration on two parameters gave reasonable results for annual soil loss. This model calibration was then used to quantify the effectiveness of three strategies for spatial prioritisation: according to hydrological connectivity, sheet erosion risk level and estimated specific sediment yield. The latter two strategies resulted in a maximum reduction in total soil loss due to reduced autumn tillage of 10%. Both model performance and the effectiveness of the different prioritisation strategies varied between the study catchments.

Til dokument

Sammendrag

Key message Volume predictions of sample trees are basic inputs for essential National Forest Inventory (NFI) estimates. The predicted volumes are rarely comparable among European NFIs because of country-specific dbh-thresholds and differences regarding the inclusion of the tree parts stump, stem top, and branches. Twenty-one European NFIs implemented harmonisation measures to provide consistent stem volume predictions for comparable forest resource estimates. Context The harmonisation of forest information has become increasingly important. International programs and interest groups from the wood industry, energy, and environmental sectors require comparable information. European NFIs as primary source of forest information are well-placed to support policies and decision-making processes with harmonised estimates. Aims The main objectives were to present the implementation of stem volume harmonisation by European NFIs, to obtain comparable growing stocks according to five reference definitions, and to compare the different results. Methods The applied harmonisation approach identifies the deviations between country-level and common reference definitions. The deviations are minimised through country-specific bridging functions. Growing stocks were calculated from the un-harmonised, and harmonised stem volume estimates and comparisons were made. Results The country-level growing stock results differ from the Cost Action E43 reference definition between − 8 and + 32%. Stumps and stem tops together account for 4 to 13% of stem volume, and large branches constitute 3 to 21% of broadleaved growing stock. Up to 6% of stem volume is allocated below the dbh-threshold. Conclusion Comparable volume figures are available for the first time on a large-scale in Europe. The results indicate the importance of harmonisation for international forest statistics. The presented work contributes to the NFI harmonisation process in Europe in several ways regarding comparable NFI reporting and scenario modelling.

Til dokument

Sammendrag

The present work studied the effect of the year of harvest, the genotype and the cultivation method on the nutritional quality and the allergen content of three plum cultivars. The common quality parameters and the phytochemical content strongly varied with the year and the cultivar, while the system of cultivation had a minor influence. In particular, ascorbic acid greatly decreased in 2016 compared to 2015, while polyphenols were higher in 2016. The health-promoting compounds, and particularly phenolics, were significantly correlated with the antioxidant capacity. Finally, the allergen content was strongly dependent on the content of flavan-3-ols, suggesting that this class of phenolics is determinant in influencing the allergen content in plums. Results showed that the major factor affecting the quality and the concentration of natural metabolites of plum, in addition to the diversity among genotypes, is the year-to-year variation, whereas the system of cultivation plays a marginal role.

Til dokument Til datasett

Sammendrag

This study presents a novel application of machine learning to deliver optimised, multi-model combinations (MMCs) of Global Hydrological Model (GHM) simulations. We exemplify the approach using runoff simulations from five GHMs across 40 large global catchments. The benchmarked, median performance gain of the MMC solutions is 45% compared to the best performing GHM and exceeds 100% when compared to the ensemble mean (EM). The performance gain offered by MMC suggests that future multi-model applications consider reporting MMCs, alongside the EM and intermodal range, to provide end-users of GHM ensembles with a better contextualised estimate of runoff. Importantly, the study highlights the difficulty of interpreting complex, non-linear MMC solutions in physical terms. This indicates that a pragmatic approach to future MMC studies based on machine learning methods is required, in which the allowable solution complexity is carefully constrained.

Til dokument

Sammendrag

The fungal genera Metarhizium and Beauveria are considered as both entomopathogens and endophytes; they are able to colonize a wide variety of plants and can cause increased plant growth and protect plants against pests. In view of the need for new biological methods for plant protection and how promising and little studied candidates entomopathogens are, the aim of this research was to evaluate the potential of two isolates of Metarhizium robertsii (ESALQ 1622) and Beauveria bassiana (ESALQ 3375) to suppress spider mite Tetranychus urticae population growth and ability to promote growth of bean plants Phaseolus vulgaris after seed treatment, in order to develop an innovative strategy by using these fungi as inoculants to improve both spider mites control and plant growth and yield. In addition, behavioral responses and predation rates of the predatory mite Phytoseiulus persimilis towards fungal treated plants and spider mites from these plants were also evaluated in leaf disc assays to assess potential conflicting effects of the fungal inoculations on overall pest control at higher trophic levels. Seed inoculations by the two isolates of M. robertsii and B. bassiana were done individually and in combinations to evaluate potential benefits of co-inoculants. The results showed a significant reduction in T. urticae populations and improved plant development when inoculated with M. robertsii and B. bassiana individually and in combination. The predatory mite P. persimilis showed no difference in the predation rate on T. urticae from treated and untreated plants even though the predators were most likely to feed on spider mites from fungal treated plants during the first half of the trial, and on spider mites from control plants during the remainder of the trial. Overall, the two fungal isolates have potential as seed inoculants to suppress spider mites in bean and the strategy appears to have no conflict with use of predatory mites. Co-inoculation of both fungal isolates showed no additional benefits compared to single isolate applications under the given test conditions.

Til dokument

Sammendrag

Fusarium is one of the most diverse fungal genera affecting several crops around the world. This study describes the phylogeny of Fusarium species associated with grains of sorghum and finger millet from different parts of Ethiopia. Forty-two sorghum and 34 finger millet grain samples were mycologically analysed. All of the sorghum and more than 40% of the finger millet grain samples were contaminated by the Fusarium species. The Fusarium load was higher in sorghum grains than that in finger millet grains. In addition, 67 test isolates were phylogenetically analysed using EF-1α and β-tubulin gene primers. Results revealed the presence of eight phylogenetic placements within the genus Fusarium, where 22 of the isolates showed a close phylogenetic relation to the F. incarnatum–equiseti species complex. Nevertheless, they possess a distinct shape of apical cells of macroconidia, justifying the presence of new species within the Fusarium genus. The new species was the most dominant, represented by 33% of the test isolates. The current work can be seen as an important addition to the knowledge of the biodiversity of fungal species that exists within the Fusarium genus. It also reports a previously unknown Fusarium species that needs to be investigated further for toxin production potential.

Til dokument

Sammendrag

The objective of this study was to evaluate the effect of wheeling with two different wheel loads (1.7 and 2.8 Mg) and contrasting wheeling intensities (1x and 10x) on the bearing capacity of a Stagnosol derived from silty alluvial deposits. Soil strength was assessed by laboratory measurements of the precompression stress in topsoil (20 cm) and subsoil (40 and 60 cm) samples. Stress propagation, as well as elastic and plastic deformation during wheeling were measured in the field with combined stress state (SST) and displacement transducers (DTS). We also present results from soil physical analyses (bulk density, air capacity, saturated hydraulic conductivity) and barley yields from the first two years after the compaction. Although the wheel loads used were comparatively small, typical for the machinery used in Norway, the results show that both increased wheel load and wheeling intensity had negative effects on soil physical parameters especially in the topsoil but with similar tendencies also in the subsoil. Stress propagation was detected down to 60 cm depth (SST). The first wheeling was most harmful, but all wheelings led to accumulative plastic soil deformation (DTS). Under the workable conditions in this trial, increased wheeling with a small machine was more harmful to soil structure than a single wheeling with a heavier machine. However, the yields in the first two years after the compaction did not show any negative effect of the compaction.

Til dokument Til datasett

Sammendrag

Interspecific brood parasitism is common in many animal systems. Brood parasites enter the nests of other species and divert host resources for producing their own offspring, which can lead to strong antagonistic parasite–host coevolution. Here, we look at commonalities among social insect species that are victims of brood parasites, and use phylogenetic data and information on geographical range size to predict which species are most probably to fall victims to brood parasites in the future. In our analyses, we focus on three eusocial hymenopteran groups and their brood parasites: (i) bumblebees, (ii) Myrmica ants, and (iii) vespine and polistine wasps. In these groups, some, but not all, species are parasitized by obligate workerless inquilines that only produce reproductive-caste descendants.We find phylogenetic signals for geographical range size and the presence of parasites in bumblebees, but not in ants and wasps. Phylogenetic logistic regressions indicate that the probability of being attacked by one or more brood parasite species increases with the size of the geographical range in bumblebees, but the effect is statistically only marginally significant in ants. However, non-phylogenetic logistic regressions suggest that bumblebee species with the largest geographical range sizes may have a lower likelihood of harbouring social parasites than do hosts with medium-sized ranges. Our results provide new insights into the ecology and evolution of host–social parasite systems, and indicate that host phylogeny and geographical range size can be used to predict threats posed by social parasites, as well to design efficient conservation measures for both hosts and their parasites. This article is part of the theme issue ‘The coevolutionary biology of brood parasitism: from mechanism to pattern’.

Til dokument

Sammendrag

The study intended to compare repellency of three insecticides on bumble bees and honey bees in Norwegian red clover (Trifolium pratense L.) seed crops, and to examine effects of thiacloprid on bumble bee colony development in the field. The repellency study was carried out in a largescale field trial in SE Norway in 2013. On average for observations during the first week after spraying, 17 and 40% less honey bees (P = .03) and 26 and 20% less bumble bees (P = .36) were observed on plots sprayed with the pyrethroids lambda-cyhalothrin and alpha-cypermethrin, respectively, than on unsprayed control plots. No pollinator repellency was found on plots sprayed with the neonicotinoid thiacloprid. Compared with unsprayed control the seed yield increases were 22% on plots sprayed with thiacloprid vs. 12–13% on plots sprayed with pyrethroids (P = .10). Follow-up studies in 2014–2016 focused on the effect of thiacloprid on bumble bee colony development in commercially reared nests of Bombus terrestris placed into red clover seed crops at the start of flowering. Unsprayed control crops were compared with crops sprayed either at the bud stage or when 18–44% of flower heads were in full bloom. Chemical analyses of adult bumble bees showed that thiacloprid was taken up in bees when crops were sprayed during flowering, but not detected when crops were sprayed at the bud stage. The bumble bees in late-sprayed crops also developed weaker colonies than in unsprayed crops. Dead bees with a high internal concentration of thiacloprid were found in one crop sprayed during the night at 35% flowering. This shows that thiacloprid is not bee-safe if sprayed after anthesis and that spraying has to be conducted at the bud stage to reduce its contamination of nectar and pollen.

Til dokument

Sammendrag

Convergent evolution of semiochemical use in organisms from different Kingdoms is a rarely described phenomenon. Tree-killing bark beetles vector numerous symbiotic blue-stain fungi that help the beetles colonize healthy trees. Here we show for the first time that some of these fungi are able to biosynthesize bicyclic ketals that are pheromones and other semiochemicals of bark beetles. Volatile emissions of five common bark beetle symbionts were investigated by gas chromatography-mass spectrometry. When grown on fresh Norway spruce bark the fungi emitted three well-known bark beetle aggregation pheromones and semiochemicals (exo-brevicomin, endo-brevicomin and trans-conophthorin) and two structurally related semiochemical candidates (exo-1,3-dimethyl-2,9-dioxabicyclo[3.3.1]nonane and endo-1,3-dimethyl-2,9-dioxabicyclo[3.3.1]nonane) that elicited electroantennogram responses in the spruce bark beetle Ips typographus. When grown on malt agar with 13C D-Glucose, the fungus Grosmannia europhioides incorporated 13C into exo-brevicomin and trans-conophthorin. The enantiomeric compositions of the fungus-produced ketals closely matched those previously reported from bark beetles. The production of structurally complex bark beetle pheromones by symbiotic fungi indicates cross-kingdom convergent evolution of signal use in this system. This signaling is susceptible to disruption, providing potential new targets for pest control in conifer forests and plantations.

Til dokument

Sammendrag

Surface mould growth contributes to the colour changes of outdoor exposed wood over time. Modelling mould growth can thus help visualize wooden facades’ colour development, which can improve facade design and service life. However, existing wood mould models do not consider transient wetting effects that occur outdoors due to precipitation and condensation. To address this, four mould models were evaluated using laboratory experimental data that included exposure to transient wetting. First, the models (the original and the updated VTT model, the biohygrothermal model and the mould resistance design (MRD) model) were evaluated for Scots pine sapwood. For this evaluation, the transient wetting effect was implemented in the models by using hourly wood surface relative humidity (RH), calculated from electrical resistance measurements, as input. This showed that the original and the updated VTT model gave best fit to the experimental data. However, further evaluation of these two models for more wood materials showed that the updated VTT model was sensitive to the choice of material parameters. Large discrepancies occurred when varying the material parameters in the updated VTT model. Finally, different estimates of RH were tested in the original VTT model. Using wood surface RH as input gave best fit to the experimental data, and ambient air RH gave poorest fit. Overall, the results indicate that the original VTT model is fairly reliable and can be used to predict mould growth on wooden claddings exposed to transient wetting as long as the wood surface climate is used as climatic input data.

Til dokument

Sammendrag

Knowledge about spatiotemporal variability of climate change effect on tree-ring width (TRW) and crown condition is essential to optimize the modelling of future forest ecosystem responses to the changing climate. Geographical differences in the climate–growth relationship are a reflection of the regional climatic conditions mainly. In this study, 175 Picea abies trees from the north-western edge of its geographical distribution in Central Norway were evaluated with respect to geographical and age-dependent differences during the common period of 1950–2015. The results showed that the most significant positive correlations between TRW and the current June temperature were unstable although the temperature increased. The correlations suddenly started to decrease (regardless of the site placement and tree age) at the beginning of the 1990s, but subsequently unexpectedly increased in the 2010s. The superposed epoch analysis revealed longer TRW regeneration of the southern plots (except over-mature trees) after negative pointer years compared to the northern plots. Previous summer temperature and related physiological processes (cone crops, storage of nutrients, etc.) significantly negatively affected P. abies growth in the current year. Additionally, our results showed that the selection of the chronology version (standard or residual) significantly affects the resulting correlations and thus must be carefully considered in dendroclimatological studies. Our main outputs can contribute to better understanding of the climate–growth relationship variability and general prediction of the radial growth.

Til dokument

Sammendrag

Red clover (Trifolium pratense) grown in mixtures with grasses often constitutes a lower proportion of total yield in spring than in summer growth. A more even red clover proportion between the harvests would benefit forage quality and management at feeding. We investigated whether inclusion of early versus late‐maturing red clover varieties could reduce this disproportionality. In a two‐year field trial harvested three times per season, each of six red clover varieties was grown in two grass mixtures. Rate of phenological development did not differ during spring growth, but did so in regrowth after first and second cuts. Here, the earliest varieties constituted the highest proportion. At all harvests, the early varieties had lower crude protein concentrations and a higher content of neutral detergent fibre (NDF) and indigestible NDF than the late varieties. Clover proportion was higher in swards with a mixture of timothy and meadow fescue than in swards with perennial ryegrass during the first year and lower in the second year. It is concluded that developmental rate should be explored further as a key character for red clover competiveness in spring growth of rapidly elongating grasses.

Til dokument

Sammendrag

With the ongoing climate change, African rainforests are expected to experience severe drought events in the future. In Africa, the tropical genus Erythrophleum (Fabaceae) includes two forest sister timber tree species displaying contrasting geographical distributions. Erythrophleum ivorense is adapted to wet evergreen Guineo-Congolian forests, whereas E. suaveolens occurs in a wider range of climates, being found in moist dense forests but also in gallery forests under a relatively drier climate. This geographical distribution pattern suggests that the two species might cope differently to drought at the genomic level. Yet, the genetic basis of tolerance response to drought stress in both species is still uncharacterized. To bridge this gap, we performed an RNA-seq approach on seedlings from each species to monitor their transcriptional responses at different levels of drought stress (0, 2 and 6 weeks after stopping watering seedlings). Monitoring of wilting symptoms revealed that E. suaveolens displayed an earlier phenotypic response to drought stress than E. ivorense. At the transcriptomic level, results revealed 2020 (1204 down-regulated/816 up-regulated) and 1495 differentially expressed genes (DEGs) in response to drought stress from a total of 67,432 and 66,605 contigs assembled in E. ivorense and E. suaveolens, respectively. After identifying 30,374 orthologs between species, we found that only 7 of them were DEGs shared between species, while 587 and 458 were differentially expressed only in E. ivorense or E. suaveolens, respectively. GO and KEGG enrichment analysis revealed that the two species differ in terms of significantly regulated pathways as well as the number and expression profile of DEGs (Up/Down) associated with each pathway in the two stress stages. Our results suggested that the two studied species react differently to drought. E. suaveolens seems displaying a prompt response to drought at its early stage strengthened by the down-regulation of many DEGs encoding for signaling and metabolism-related pathways. A considerable up-regulation of these pathways was also found in E. ivorense at the late stage of drought, suggesting this species may be a late responder. Overall, our data may serve as basis for further understanding the genetic control of drought tolerance in tropical trees and favor the selection of crucial genes for genetically enhancing drought resistance.

Sammendrag

A novel method for age-independent site index estimation is demonstrated using repeated single-tree airborne laser scanning (ALS) data. A spruce-dominated study area of 114 km2 in southern Norway was covered by single-tree ALS twice, i.e. in 2008 and 2014. We identified top height trees wall-to-wall, and for each of them we derived based on the two heights and the 6-year period length. We reconstructed past, annual height growth in a field campaign on 31 sample trees, and this showed good correspondence with ALS based heights. We found a considerable increase in site index, i.e. about 5 m in the H40 system, from the old site index values. This increase corresponded to a productivity increase of 62%. This increase appeared to mainly represent a real temporal trend caused by changing growing conditions. In addition, the increase could partly result from underestimation in old site index values. The method has the advantages of not requiring tree-age data, of representing current growing conditions, and as well that it is a cost-effective method with wall-towall coverage. In slow-growing forests and short time periods, the method is least reliable due to possible systematic differences in canopy penetration between repeated ALS scans.

Til dokument

Sammendrag

Biochar has been shown to reduce nitrous oxide (N2O) emissions from soils, but the effect is highly variable across studies and the mechanisms are under debate. To improve our mechanistic understanding of biochar effects on N2O emission, we monitored kinetics of NO, N2O and N2 accumulation in anoxic slurries of a peat and a mineral soil, spiked with nitrate and amended with feedstock dried at 105 °C and biochar produced at 372, 416, 562 and 796 °C at five different doses. Both soils accumulated consistently less N2O and NO in the presence of high-temperature chars (BC562 and BC796), which stimulated reduction of denitrification intermediates to N2, particularly in the acid peat. This effect appeared to be strongly linked to the degree of biochar carbonisation as predicted by the H:C ratio of the char. In addition, biochar surface area and pH were identified as important factors, whereas ash content and CEC played a minor role. At low pyrolysis temperature, the biochar effect was soil dependent, suppressing N2O accumulation in the mineral soil, but enhancing it in the peat soil. This contrast was likely due to the labile carbon content of low temperature chars, which contributed to immobilise N in the mineral soil, but stimulated denitrification and N2O emission in the peat soil. We conclude that biochar with a high degree of carbonisation, high pH and high surface area is best suited to supress N2O emission from denitrification, while low temperature chars risk supporting incomplete denitrification.

Til dokument

Sammendrag

When exposed to moisture, wood undergoes swelling and is susceptible to fungal degradation. Chemical modification via oligomeric lactic acid (OLA) treatment has been found to be a promising environmentally friendly solution to this disadvantage. In this study, wood was impregnated with OLA and then variously heat treated to polymerize the OLA in situ. The effect of curing temperature and time on OLA polymerization has been determined chemically. Dimensional stability was examined by water immersion and hygroscopicity measurements and biological decay resistance also evaluated. OLA impregnation followed by heat treatment enhanced wood properties. OLA cure at 160 °C for 48 h resulted in treated wood with greater dimensional stability and biological resistance.

Til dokument

Sammendrag

Retail food environment is increasingly considered in relation to obesity. This study investigates the impacts of access to supermarkets, the primary source of healthy foods in the United States, on the bodyweight of children. Empirical analysis uses individual-level panel data covering health screenings of public schoolchildren from Arkansas with annual georeferenced business lists, and utilizes the variations of supermarket openings and closings. There is little overall impact in either case. However, supermarket openings are found to reduce the BMI z-scores of low-income children by 0.090 to 0.096 standard deviations. Such impact remains in a variety of robustness exercises. Therefore, improvement in healthy food access could at least help reduce childhood obesity rates among certain population groups.

Til dokument

Sammendrag

Fungal non-ribosomal peptide synthetase (NRPS) clusters are spread across the chromosomes, where several modifying enzyme-encoding genes typically flank one NRPS. However, a recent study showed that the octapeptide fusaoctaxin A is tandemly synthesized by two NRPSs in Fusarium graminearum. Here, we illuminate parts of the biosynthetic route of fusaoctaxin A, which is cleaved into the tripeptide fusatrixin A and the pentapeptide fusapentaxin A during transport by a cluster-specific ABC transporter with peptidase activity. Further, we deleted the histone H3K27 methyltransferase kmt6, which induced the production of fusaoctaxin A.

Til dokument

Sammendrag

We introduce a mathematical model to describe the tritrophic interaction between crop, pest and the pest natural enemy where the release of Volatile Organic Compounds (VOCs) by crop is taken into account. The VOCs may be considered as an indirect defence mechanism of the plant as they attract the pest natural enemies toward the attacked plants. The model dynamics is studied through qualitative analysis and numerical simulations. The factors that may enhance pest disappearance are identified. In particular, we show that VOCs may have a beneficial effect on the environment since their release may be able to stabilize the model dynamics. Specifically, for the parameter values that we have explored, this effect can arise only when both the phenomena of VOCs basic plant release and VOCs plant release due to pest attack are present.

Til dokument

Sammendrag

We studied the effect of three Pandora neoaphidis isolates from one Sitobion avenae population, three temperatures, and two aphid species namely S. avenae and Rhopalosiphum padi on (i) aphid mortality, (ii) time needed to kill aphids, and (iii) aphid average daily and lifetime fecundity. A total of 38% of S. avenae and 7% of R. padi died and supported fungus sporulation. S. avenae was killed 30% faster than R. padi. Average daily fecundity was negatively affected only in S. avenae inoculated with, but not killed by, P. neoaphidis. Nevertheless, lifetime fecundity of both aphid species inoculated and sporulating with P. neoaphidis was halved compared to lifetime fecundity of surviving aphids in the control. Increased temperature resulted in higher mortality rates but did not consistently affect lethal time or fecundity. Results suggest that (i) temperature effects on virulence differ between isolates, even when obtained within the same host population, and (ii) even though an isolate does not kill a host it may reduce its fecundity. Our findings are important for the understanding of P. neoaphidis epizootiology and for use in pest-natural enemy modelling.

Til dokument Til datasett

Sammendrag

Field and laboratory studies show increased leaching of pesticides through macropores in frozen soil. Fast macropore flow has been shown to reduce the influence of pesticide properties on leaching, but data on these processes are scarce. The objective of this study was to investigate the effect of soil freezing and thawing on transport of pesticides with a range of soil sorption coefficients (Kf). To do this we conducted a soil column study to quantify the transport of bromide and five pesticides (2-methyl-4-chlorophenoxyacetic acid, clomazone, boscalid, propiconazole, and diflufenican). Intact topsoil and subsoil columns from two agricultural soils (silt and loam) in southeastern Norway were used in this experiment, and pesticides were applied to the soil surface in all columns. Half the columns were then frozen (−3°C), and the other half were left unfrozen (4°C). Columns were subjected to repeated irrigation events where 25 mm of rainwater was applied during 5 h at each event. Irrigations were followed by 14-d periods of freezing or refrigeration. Percolate was collected and analyzed for pesticides and bromide. Pesticide leaching was up to five orders of magnitude larger from frozen than unfrozen columns. Early breakthrough (<<1 pore volume) of high concentrations was observed for pesticides in frozen columns, indicating that leaching was dominated by preferential flow. The rank order in pesticide leaching observed in this study corresponded to the rank order of mean Kf values for the pesticides, and the results suggest that sorption plays a role in determining leaching losses even in frozen soil.

Til dokument

Sammendrag

Pasteuria spp. belong to a group of genetically diverse endospore-forming bacteria (phylum: Firmicutes) that are known to parasitize plant-parasitic nematodes and water fleas (Daphnia spp.). Collagen-like fibres form the nap on the surface of endospores and the genes encoding these sequences have been hypothesised to be involved in the adhesion of the endospores of Pasteuria spp. to their hosts. We report a group of 17 unique collagen-like genes putatively encoded by Pasteuria penetrans (strain: Res148) that formed five different phylogenetic clusters and suggest that collagen-like proteins are an important source of genetic diversity in animal pathogenic Firmicutes including Pasteuria. Additionally, and unexpectedly, we identified a putative collagen-like sequence which had a very different sequence structure to the other collagen-like proteins but was similar to the protein sequences in Megaviruses that are involved in host-parasite interactions. We, therefore, suggest that these diverse endospore surface proteins in Pasteuria are involved in biological functions, such as cellular adhesion; however, they are not of monophyletic origin and were possibly obtained de novo by mutation or possibly through selection acting upon several historic horizontal gene transfer events.

Sammendrag

Norway has a political goal to minimize the loss of cultural heritage due to removal, destruction or decay. On behalf of the national Directorate for Cultural Heritage, we have developed methods to monitor Cultural Heritage Environments. The complementary set of methods includes (1) landscape mapping through interpretation of aerial photographs, including field control of the map data, (2) qualitative and quantitative initial and repeat landscape photography, (3) field recording of cultural heritage objects including preparatory analysis of public statistical data, and (4) recording of stakeholder attitudes, perceptions and opinions. We applied these methods for the first time to the historical clustered farm settlement of Havrå in Hordaland County, West Norway. The methods are documented in a handbook and can be applied as a toolbox, where different monitoring methods or frequency of repeat recording may be selected, dependent on local situations, e.g., on the landscape character of the area in focus.

Til dokument

Sammendrag

Root and butt-rot (RBR) has a significant impact on both the material and economic outcome of timber harvesting, and therewith on the individual forest owner and collectively on the forest and wood processing industries. An accurate recording of the presence of RBR during timber harvesting would enable a mapping of the location and extent of the problem, providing a basis for evaluating spread in a climate anticipated to enhance pathogenic growth in the future. Therefore, a system to automatically identify and detect the presence of RBR would constitute an important contribution in addressing the problem without increasing workload complexity for the machine operator. In this study we developed and evaluated an approach based on RGB images to automatically detect tree-stumps and classify them as to the absence or presence of rot. Furthermore, since knowledge of the extent of RBR is valuable in categorizing logs, we also classify stumps to three classes of infestation; rot = 0%, 0% < rot < 50% and rot >= 50%. In this work we used deep learning approaches and conventional machine learning algorithms for detection and classification tasks. The results showed that tree-stumps were detected with precision rate of 95% and recall of 80%. Using only the correct output (TP) of the stump detector, stumps without and with root and butt-rot were correctly classified with accuracy of 83.5% and 77.5%. Classifying rot to three classes resulted in 79.4%, 72.4% and 74.1% accuracy for stumps with rot = 0%, 0% < rot < 50% and rot >= 50\%, respectively. With some modifications, the algorithm developed could be used either during the harvesting operation to detect RBR regions on the tree-stumps or as a RBR detector for post-harvest assessment of tree-stumps and logs.

Til dokument

Sammendrag

1 Ips amitinus arrived in Northern Europe at the beginning of 1900s, although its recent expansions to the northernmost conifers have been rapid. 2 Analyses of recent records, MaxEnt models and regional population size estimates are used to discuss its peculiar range shifts and potential as a forest pest in Northern Europe. 3 Ips amitinus was probably absent in northern glacial refugia for Norway spruce in the Russian plain and northward expansions from its glacial refugia in the Central European mountains may have been slowed down by: (i) ecological barriers of post-glacial dry plains and bogs in Central Europe; (ii) heavy utilization of conifers; and (iii) Allee effects as a result of fragmented forests and an unfavourable climate for a cold-adapted species in the continental lowlands. 4 MaxEnt models predict that I. amitinus may become widespread in the Northern European forests, whereas its populations in the southernmost mountain ranges of Europe may decline in the future. 5 The population levels of I. amitinus in recently invaded northern areas are still lower than those in core areas of Central Europe, although the population development in Central Europe indicates that future bark beetle outbreak periods may boost the I. amitinus populations in Northern Europe as well.

Til dokument

Sammendrag

Recent studies on using soil enhancer material, such as biochar, provide varying results from a soil hydrological and chemical perspective. Therefore, research focusing on soil-biochar-plant interactions is still necessary to enhance our knowledge on complex effects of biochar on soil characteristics. The present study investigated the changes in soil water content (SWC) and soil respiration (belowground CO2 production) over time during the growth of Capsicum annuum (pepper) in pot experiments. Concurrently, we investigated the influence of grain husk biochar with the amount of 0, 0.5%, 2.5%, and 5.0% (by weight) added to silt loam soil. Pepper plants were grown under natural environmental conditions to better represent field conditions, and additional irrigation was applied. SWC among treatments showed minor changes to precipitation during the beginning of the study while plants were in the growing phase. The highest water holding throughout the experiment was observed in the case of BC5.0. CO2 production increased in biochar amended soils during the first few days of the experiments; while the overall cumulative CO2 production was the highest in control and the lowest in BC2.5 treatments. We used the HYDRUS 1D soil hydrological model to simulate changes in SWC, using the control treatment without biochar as a reference data source for model calibration. The simulated SWC dynamics fitted well the measured ones in all treatments. Therefore, the HYDRUS 1D can be an exceptionally valuable tool to predict the hydrological response of different amount of biochar addition to silt loam soil including plant growth.

Til dokument

Sammendrag

This study addresses changes in visual appearance of unpainted wood materials exposed outdoors. Specimens of aspen (Populus tremula), Norway spruce (Picea abies), untreated Scots pine (Pinus sylvestris), DMDHEU-modified Scots pine and acetylated Radiata pine (Pinus radiata) were exposed facing south in Ås, Norway for 62 weeks. During this period, mould growth coverage, lightness (L*) and the uniformity of the weather grey colour were assessed. Mould growth coverage was evaluated visually using a rating system. L* and the uniformity were evaluated using image analysis. The increase in mould rating of the wood materials developed in varying speed, but all specimens had reached the maximum rating after 42 weeks. Until then, the changes in L* correlated significantly with the mould rating. However, the specimens continued to darken after they had reached maximum mould rating. DMDHEU was the only material that obtained a more uniform colour as a consequence of the weathering.

Til dokument

Sammendrag

Mediterranean climate areas are home to highly relevant and distinctive agro-ecosystems, where sustainability is threatened by water scarcity and continuous loss of soil organic carbon. In these systems, recycling strategies to close the loop between crop production (and agrorelated industries) and soil conservation are of special interest in the current context of climate change mitigation. Pyrolysis represents a recycling option for the production of energy and biochar, a carbonaceous product with a wide range of environmental and agronomic applications. Considering that biochar functionality depends on both the original biomass and the pyrolysis conditions, we produced and characterized 22 biochars in order to evaluate their potential to sequester C and modify soil physicochemical properties. The pore size distribution was a function of the original biomass and did not change with the temperature of pyrolysis. The highest number of pores within the size 0.2−30 μm, relevant for plant available water retention, was reached at 600 °C. However, ideal pyrolysis conditions to optimize C stability and hydrologic properties was reached at 400 °C in woody derived biochars, as higher temperatures lead to a nontransient hydrophobicity. This study highlights relevant physicochemical properties of locally derived biochars that can be used to tackle specific challenges in Mediterranean agroecosystems.

Til dokument

Sammendrag

Synthetic Aperture Radar (SAR) data have gained interest for a variety of remote sensing applications, given the capability of SAR sensors to operate independent of solar radiation and day/night conditions. However, the radiometric quality of SAR images is hindered by speckle noise, which affects further image processing and interpretation. As such, speckle reduction is a crucial pre-processing step in many remote sensing studies based on SAR imagery. This study proposes a new adaptive de-speckling method based on a Gaussian Markov Random Field (GMRF) model. The proposed method integrates both pixel-wised and contextual information using a weighted summation technique. As a by-product of the proposed method, a de-speckled pseudo-span image, which is obtained from the least-squares analysis of the de-speckled multi-polarization channels, is also produced. Experimental results from the medium resolution, fully polarimetric L-band ALOS PALSAR data demonstrate the effectiveness of the proposed algorithm compared to other well-known de-speckling approaches. The de-speckled images produced by the proposed method maintainthe mean value of the original image in homogenous areas, while preserving the edges of features in heterogeneous regions. In particular, the equivalent number of look (ENL) achieved using the proposed method improves by about 15% and 47% compared to the NL-SAR and SARBM3D de-speckling approaches, respectively. Other evaluation indices, such as the mean and variance of the ratio image also reveal the superiority of the proposed method relative to other de-speckling approaches examined in this study.

Til dokument

Sammendrag

This study investigated the effect of five different pre-treatment methods (ammonia (NH3), caustic soda (NaOH), dry milling, hot water and steam explosion) for straw for biogas production. The methods were selected based on their suitability for implementation in farm-scale biogas plants. The pre-treatment methods were applied to four different types of straw. Batch anaerobic digestion tests were carried out in bottles at mesophilic temperature (37 ± 1 °C). The straw was analysed for lignin, hemicellulose and cellulose. The results showed large variations in methane production following the different pre-treatment methods. There were also large variations between the pre-treatment methods in their effect on the different types of straw. Pre-treatment with NaOH on barley straw was particularly effective. The results also showed that the shorter the retention time in the reactor, the more important the choice of pre-treatment method. Different pre-treatment methods were found to be optimal, to some extent, for different retention times.

Til dokument Til datasett

Sammendrag

Dairy products are often considered challenging for health due to their saturated fatty acid content, yet they also provide beneficial nutrients, some unique to ruminants. The degree of fat saturation is influenced by cows’ diets; grazing pasture enhances unsaturated fatty acids in milk compared with conserved forages. These benefits can be partially mimicked by feeding oilseeds and here we consider the impact on milk composition in a 2 × 2 trial, feeding rapeseed to both conventional and organic cows, finding very differing lipid metabolism in the 4 experimental groups. For milk fat, benefits of organic rather than conventional management (+39% PUFA, +24% long chain omega-3 and +12% conjugated linoleic acid (CLA)) appear complementary to those from feeding rape (+43% MUFA, +10% PUFA, +40% CLA), combining to produce milk 16% lower SFA and higher in MUFA (43%), PUFA (55%) and CLA (59%). Organic and rape feeding provide less omega-3 PUFA than the conventional and control diets, yet contrary to expectations, together they almost doubled (+94%) the omega-3 concentration in milk, implying a 3.8 fold increase in net transfer from diet into milk. Organic and rape feeding also gave lower trace-elements and antioxidants in milk. Greater understanding of these phenomena might enhance the sustainability of dairying.

Til dokument

Sammendrag

Liming of acidic soils has been suggested as a strategy to enhance N2O reduction to N2 during heterotrophic denitrification, and mitigate N2O emission from N fertilised soils. However, the mechanisms involved and possible interactions of key soil parameters (NO3− and O2) still need to be clarified. To explore to what extent soil pH controls N2O emissions and the associated N2O/(N2O + N2) product ratio in an acidic sandy soil, we set-up three sequential incubation experiments using an unlimed control (pH 4.1) and a limed soil (pH 6.9) collected from a 50-year liming experiment. Interactions between different NO3− concentrations, N forms (ammonium- and nitrate) and oxygen levels (oxic and anoxic) on the liming effect of N2O emission and reduction were tested in these two sandy soils via direct N2 and N2O measurements. Our results showed 50-year liming caused a significant increase in denitrification and soil respiration rate of the acidic sandy soil. High concentrations of NO3− in soil (>10 mM N in soil solution, equivalent to 44.9 mg N kg−1 soil) almost completely inhibited N2O reduction to N2 (>90%) regardless of the soil pH value. With decreasing NO3− application rate, N2O reduction rate increased in both soils with the effect being more pronounced in the limed soil. Complete N2O reduction to N2 in the low pH sandy soil was also observed when soil NO3− concentration decreased below 0.2 mM NO3−. Furthermore, liming evidently increased both N2O emissions and the N2O/(N2+N2O) product ratio under oxic conditions when supplied with ammonium-based fertiliser, possibly due to the coupled impact of stimulated nitrification and denitrification. Overall, our data suggest that long-term liming has the potential to both increase and decrease N2O emissions, depending on the soil NO3− level, with high soil NO3− levels overriding the assumed direct pH effect on N2O/(N2+N2O) product ratio.

Til dokument

Sammendrag

The use of blankets in horses is widespread in Northern Europe. However, horses are very adaptable to low temperatures and the practice is questioned because blankets may hamper heat dissipation at high temperatures and also disturb free movement. The aim of the current study was to gain information about horses’ own preferences for wearing or not wearing a blanket under different weather conditions during the seasons. 10 horses usually wearing blankets and 13 horses usually not wearing blankets were kept outside in their paddock for 2 h during different weather conditions. Then, these horses were tested for their preference for wearing blankets (see Mejdell et al., 2016). When only considering air temperature and not the impact of other weather factors, the horses preferred to have the blanket on in 80% and 90% of the test at t < -10 °C in horses usually wearing and not wearing blankets, respectively. As air temperature increased, the preference for keeping the blanket on decreased and at air temperatures > 20 °C, the horses preferred to remove the blanket in all the tests. According to the statistical model, the probability for choosing to have a blanket on increased with increasing wind speed, and also precipitation increased the probability for choosing to have a blanket on. Sunshine however, reduced the probability for choosing to wear a blanket.

Sammendrag

The objective of this paper was to examine how cutting frequency, silage fermentation patterns and clover performance in grass-clover swards influence the use of inputs and profitability in an organic dairy system. A linear programming model was developed to compare a three-cut and a two-cut system for a model farm in Central Norway, either with restricted or extensive silage fermentation at low or high red clover (Trifolium pratense L.) proportion in the sward, giving 8 different silage types in all. Input-output relations incorporated into the model were derived from a meta-analysis of organic grassland field trials in Norway as well as a silage fermentation experiment, and with feed intakes and milk yields from simulations with the ‘TINE Optifôr’ feed ration planner in the Norfor feed evaluation system. The model maximized total gross margin of farms with 260,000 l milk quota and housing capacity for 45 cows, with separate model versions for each of the 8 silage types. Farmland availability varied from 30 to 70 ha with 40 ha as the basis. Our results suggested that farmland availability and marginal return of a competing barley crop profoundly influenced the profitability of the different silage types. A high clover proportion increased dry matter (DM) yields and was far more important for profitability than the score on the other factors considered at restricted land availabilities. Profits with the three-cut systems were always greater than those with the two-cut systems, the former being associated with greater silage intakes and improved dairy cow performances but lower DM forage yields. Three-cut systems were further favoured as land availability increased and also by a lower marginal return of barley. Although use of an acidifying silage additive improved feed intakes and milk production per cow, the practice reduced total milk production and depressed profit compared to untreated, extensively fermented silage at restrictive land availabilities. With more land available, and in particular at a low marginal return of barley, use of a silage additive was profitable.

Sammendrag

In the family Orchidaceae, many species have highly specialised floral structures and floral fragrances resulting from interactions with specific pollinators. Olfactory cues are important for the moths to locate orchids at a distance, whereas visual cues are important at a closer range. In this study, we combined a portable air entrainment kit with an automated video monitoring system for collecting volatiles and observing behaviour directly around-the-clock (24 h) in the natural habitat of our target plant–arthropod system, the orchid Platanthera chlorantha and the hawkmoth Sphinx pinastri. We found that P. chlorantha was visited almost exclusively by S. pinastri. All the visits occurred after sunset, principally between sunset and midnight. Soon after midnight, visits dropped to levels recorded at sunset, then declined further towards sunrise. The period with most visits matched the peak production of the terpenoids (Z)-β-ocimene and (E)-β-ocimene. In contrast, linalool, (E)-cinnamyl alcohol and benzyl benzoate emission continued to increase beyond the period of peak visits up to sunrise. Methyl benzoate emissions declined throughout the night from a sunset peak. As temporal emission of the two volatile ocimenes from P. chlorantha flowers matches S. pinastri foraging visits to the flowers, we propose that they play a vital role in assisting hawkmoths locate their hosts. This is the first study to show correspondence in the timing of specific scent emissions in orchids and moth activity on the scale of hours.

Til dokument

Sammendrag

Norway is the largest sheep meat producer among Nordic countries with more than 1.3 million lambs and sheep slaughtered in 2017. The sheep industry is limited by the need for in-house feeding during the winter months. In summer, Norwegian sheep are mainly kept on rangeland pastures, with sufficient feed for almost double the current sheep population. Lambs are slaughtered over a three- to four-month period from September to December with a peak in September–October, providing a surplus of lamb, much of which is subsequently frozen, followed by eight months during which fresh produce is in limited supply. Norwegian consumers eat an average of 5.4 kg of sheep meat per person per year, much of which is purchased as a frozen product. The Muslim (4.2% of the population) preference for year-round halal meat, with an increased demand on the eve of the Muslim meat festival (Eid al-Adha), has the potential to boost demand, particularly in Oslo. This paper provides an overview of the Norwegian sheep farming system, the current market value chains, and the potential to meet the demand for halal meat in Norway (specifically during the Muslim meat festival—Eid al-Adha) to the advantage of both consumers and sheep farmers.

Til dokument

Sammendrag

Soil is one of the most species-rich habitats and plays a crucial role in the functioning of terrestrial ecosystems. It is acknowledged that soils and their biota deliver many ecosystem services. However, up to now, cultural ecosystem services (CES) provided by soil biodiversity remained virtually unknown. Here we present a multilingual and multisubject literature review on cultural benefits provided by belowground biota in European forests. We found 226 papers mentioning impact of soil biota on the cultural aspects of human life. According to the reviewed literature, soil organisms contribute to all CES. Impact on CES, as reflected in literature, was highest for fungi and lowest for microorganisms and mesofauna. Cultural benefits provided by soil biota clearly prevailed in the total of the reviewed references, but there were also negative effects mentioned in six CES. The same organism groups or even individual species may have negative impacts within one CES and at the same time act as an ecosystem service provider for another CES. The CES were found to be supported at several levels of ecosystem service provision: from single species to two or more functional/taxonomical groups and in some cases morphological diversity acted as a surrogate for species diversity. Impact of soil biota on CES may be both direct – by providing the benefits (or dis-benefits) and indirect – through the use of the products or services obtained from these benefits. The CES from soil biota interacted among themselves and with other ES, but more than often, they did not create bundles, because there exist temporal fluctuations in value of CES and a time lag between direct and indirect benefits. Strong regionality was noted for most of CES underpinned by soil biota: the same organism group or species may have strong impact on CES (positive, negative or both) in some regions while no, minor or opposite effects in others. Contrarily to the CES based on landscapes, in the CES provided by soil biota distance between the ecosystem and its CES benefiting area is shorter (CES based on landscapes are used less by local people and more by visitors, meanwhile CES based on species or organism groups are used mainly by local people). Our review revealed the existence of a considerable amount of spatially fragmented and semantically rich information highlighting cultural values provided by forest soil biota in Europe.

Til dokument

Sammendrag

Two short-term grazing experiments were conducted with Norwegian Red cows. In Exp 1, 24 cows were randomly assigned to one of the following three pasture allocation methods (PAM): weekly pasture allowance (7RG), grazing 1/7 of 7RG each day (1SG), or grazing as 1SG but had access to grazed part of the paddock within one week (1FG). In Exp 2, 7RG was shortened to 5 days (5RG). We hypothesized that PAM will affect sward quality, quantity, intake and production differently. Pasture chemical composition changed with advancing grazing days but were not different between treatments. Pasture intake, milk yield, and methane emission were not affected by PAM. In Exp 1, 7RG cows spent less time on grazing, whereas in Exp 2, 1FG cows spent longer on grazing than others. Patterns observed in sward quality, and behavioural and physiological adaptations of cows to short-term changes in nutrient supply may explain the observed effects.

Sammendrag

Potato (Solanum tuberosum L.) is one of the most important crops grown in Norway, and virus-free plants are required for commercial potato production and for preservation of potato germplasm. The present study evaluates three in vitro therapies – meristem culture, cryotherapy, and chemotherapy combined with thermotherapy – to eliminate viruses from eight historically valuable potato cultivars belonging to the Norwegian potato germplasm. Potato virus Y, potato virus M, potato virus X and potato virus S were present in eight selected old potato cultivars due to long-term conservation in open field. Double-antibody sandwich enzyme-linked immunological assay (DAS-ELISA) and biological indicators were the standard tests used to confirm virus infection in our study. Six virus-free plants from four potato cultivars were obtained after meristem culture, and no virus-free potato cultivars were obtained after cryotherapy. Virus-free frequency for eight different potato cultivars after combining chemotherapy with thermotherapy varied from 36.4% to 100%, with single virus elimination rates of between 74.2% and 92.9%. Chemotherapy compared with thermotherapy was the most effective of the three in vitro therapies used in this study. Highly sensitive small RNA high-throughput sequencing (HTS) was used to evaluate the virus status of potato virus-free materials after virus eradication, and no virus was found, which was consistent with the results of DAS-ELISA and biological indicators. Small RNA HTS has been reported for the first time to evaluate the virus status after virus elimination and to control virus-free potato nuclear stocks.

Til dokument

Sammendrag

We investigated dissipation, earthworm and plant accumulation of organic contaminants in soil amended with three types of sewage sludge in the presence and absence of plants. After 3 months, soil, plants and earthworms were analyzed for their content of organic contaminants. The results showed that the presence of plant roots did not affect dissipation rates, except for galaxolide. Transfer of galaxolide and triclosan to earthworms was significant, with transfer factors of 10–60 for galaxolide and 140–620 for triclosan in the presence of plants. In the absence of plants, transfer factors were 2–9 times higher. The reduced transfer to worms in the presence of plants was most likely due to roots serving as an alternative food source. Nonylphenol monoethoxylate rapidly dissipated in soil, but initial exposure resulted in uptake in worms, which was detected even 3 months after sewage sludge application. These values were higher than the soil concentration at the start of the exposure period. This indicates that a chemical's short half-life in soil is no guarantee that it poses a minimal environmental risk, as even short-term exposure may cause bioaccumulation and risks for chronic or even transgenerational effects.

Til dokument

Sammendrag

Several studies have looked at how individual environmental factors influence needle morphology in conifer trees, but interacting effects between drought and canopy position have received little attention. In this study, we characterized morphological responses to experimentally induced drought stress in sun exposed and shaded current-year Norway spruce needles. In the drought plot trees were suffering mild drought stress, with an average soil water potential at 50 cm depth of -0.4 MPa. In general, morphological needle traits had greater values in sun needles in the upper canopy than in shaded needles in the lower canopy. Needle morphology 15 months after the onset of drought was determined by canopy position, as only sun needle morphology was affected by drought. Thus, canopy position was a stronger morphogenic factor determining needle structure than was water availability. The largest influence of mild drought was observed for needle length, projected needle area and total needle area, which all were reduced by ~27% relative to control trees. Needle thickness and needle width showed contrasting sensitivity to drought, as drought only affected needle thickness (10% reduction). Needle dry mass, leaf mass per area and needle density were not affected 15 months after the onset of mild drought. Our results highlight the importance of considering canopy position as well as water availability when comparing needle structure or function between conifer species. More knowledge about how different canopy parts of Norway spruce adapt to drought is important to understand forest productivity under changing environmental conditions.

Til dokument

Sammendrag

Crop wild relatives (CWR) can provide one solution to future challenges on food security, sustainable agriculture and adaptation to climate change. Diversity found in CWR can be essential for adapting crops to these new demands. Since the need to improve in situ conservation of CWR has been recognized by the Convention on Biological Diversity (CBD) (2010) and the Global Strategy for Plant Conservation (2011–2020), it is important to develop ways to safeguard these important genetic resources. The Nordic flora includes many species related to food, forage and other crop groups, but little has been done to systematically secure these important wild resources. A Nordic regional approach to CWR conservation planning provided opportunities to network, find synergies, share knowledge, plan the conservation and give policy inputs on a regional level. A comprehensive CWR checklist for the Nordic region was generated and then prioritized by socio-economic value and utilization potential. Nordic CWR checklist was formed of 2553 taxa related to crop plants. Out of these, 114 taxa including 83 species were prioritized representing vegetable, cereal, fruit, berry, nut and forage crop groups. The in situ conservation planning of the priority CWR included ecogeographic and complementarity analyses to identify a potential network of genetic reserve sites in the region. Altogether 971,633 occurrence records of the priority species were analysed. A minimum number of sites within and outside existing conservation areas were identified that had the potential to support a maximum number of target species of maximum intraspecific diversity.

Til dokument

Sammendrag

Auxin is a molecule, which controls many aspects of plant development through both transcriptional and non-transcriptional signaling responses. AUXIN BINDING PROTEIN1 (ABP1) is a putative receptor for rapid non-transcriptional auxin-induced changes in plasma membrane depolarization and endocytosis rates. However, the mechanism of ABP1-mediated signaling is poorly understood. Here we show that membrane depolarization and endocytosis inhibition are ABP1-independent responses and that auxin-induced plasma membrane depolarization is instead dependent on the auxin influx carrier AUX1. AUX1 was itself not involved in the regulation of endocytosis. Auxin-dependent depolarization of the plasma membrane was also modulated by the auxin efflux carrier PIN2. These data establish a new connection between auxin transport and non-transcriptional auxin signaling.

Til dokument

Sammendrag

Bipolar surface EMG (sEMG) signals of the trapezius muscles bilaterally were recorded continuously with a frequency of 800 Hz during full-shift field-work by a four-channel portable data logger. After recordings of 60 forest machine operators in Finland, Norway and Sweden, we discovered erroneous data. In short of any available procedure to handle these data, a method was developed to automatically discard erroneous data in the raw data reading files (Discarding Erroneous EPOchs (DESEPO) method. The DESEPO method automatically identifies, discards and adjusts the use of signal disturbances in order to achieve the best possible data use. An epoch is a 0.1 s period of raw sEMG signals and makes the basis for the RMS calculations. If erroneous signals constitute more than 30% of the epoch signals, this classifies for discharge of the present epoch. Non-valid epochs have been discarded, as well as all the subsequent epochs. The valid data for further analyses using the automatic detection resulted in an increase of acceptable data from an average of 2.15–6.5 h per day. The combination of long-term full-shift recordings and automatic data reduction procedures made it possible to use large amount of data otherwise discarded for further analyses.

Sammendrag

Diffuse phosphorus loss from agricultural fields is an important contributor to the eutrophication of waterbodies. The objective of this study was to evaluate a pilot project for the implementation of mitigation measures to reduce P losses. The pilot project is situated in southwestern Norway and, covers a 14-year period (2004–2018). It included data on the implementation of mitigation measures and water quality monitoring for six small catchments. The mitigation measures consisted of no tillage in autumn, reduced P fertilizer application, grassed buffer zones, and sedimentation ponds. Extra efforts were made to reduce diffuse P losses during the period from 2008 to 2010. The project comprised economic incentives, an information campaign, and farm visits. Data from 2004 and 2010 showed that the use of P fertilizer during this period decreased by 80% and the area of no-till in autumn increased in all six catchments and covered 100% of the area in three of the six catchments in 2010. However, with decreased economic incentives after 2010, the degree to which the mitigation measures were implemented was reversed; P-fertilization increased, and no-till in autumn decreased. No significant effects of mitigation measures on total P and suspended sediment concentrations were detected. We conclude that economic incentives are necessary for the comprehensive implementation of mitigation measures and but that it is not always possible to show the effect on water quality.

Til dokument Til datasett

Sammendrag

Ruminant fodder production in agricultural lands in latitudes above the Arctic Circle is constrained by short and hectic growing seasons with a 24-hour photoperiod and low growth temperatures. The use of remote sensing to measure crop production at high latitudes is hindered by intrinsic challenges, such as a low sun elevation angle and a coastal climate with high humidity, which influences the spectral signatures of the sampled vegetation. We used a portable spectrometer (ASD FieldSpec 3) to assess spectra of grass crops and found that when applying multivariate models to the hyperspectral datasets, results show significant predictability of yields (R2 > 0.55, root mean squared error (RMSE) < 180), even when captured under sub-optimal conditions. These results are consistent both in the full spectral range of the spectrometer (350–2500 nm) and in the 350–900 nm spectral range, which is a region more robust against air moisture. Sentinel-2A simulations resulted in moderately robust models that could be used in qualitative assessments of field productivity. In addition, simulation of the upcoming hyperspectral EnMap satellite bands showed its potential applicability to measure yields in northern latitudes both in the full spectral range of the satellite (420–2450 nm) with similar performance as the Sentinel-2A satellite and in the 420–900 nm range with a comparable reliability to the portable spectrometer. The combination of EnMap and Sentinel-2A to detect fields with low productivity and portable spectrometers to identify the fields or specific regions of fields with the lowest production can help optimize the management of fodder production in high latitudes.

Til dokument

Sammendrag

During the past twenty years, the Nordic countries (Denmark, Sweden, Finland and Norway) have introduced a range of measures to reduce losses of nitrogen (N) to air and to aquatic environment by leaching and runoff. However, the agricultural sector is still an important N source to the environment, and projections indicate relatively small emission reductions in the coming years. The four Nordic countries have different priorities and strategies regarding agricultural N flows and mitigation measures, and therefore they are facing different challenges and barriers. In Norway farm subsidies are used to encourage measures, but these are mainly focused on phosphorus (P). In contrast, Denmark targets N and uses control regulations to reduce losses. In Sweden and Finland, both voluntary actions combined with subsidies help to mitigate both N and P. The aim of this study was to compare the present situation pertaining to agricultural N in the Nordic countries as well as to provide recommendations for policy instruments to achieve cost effective abatement of reactive N from agriculture in the Nordic countries, and to provide guidance to other countries. To further reduce N losses from agriculture, the four countries will have to continue to take different routes. In particular, some countries will need new actions if 2020 and 2030 National Emissions Ceilings Directive (NECD) targets are to be met. Many options are possible, including voluntary action, regulation, taxation and subsidies, but the difficulty is finding the right balance between these policy options for each country. The governments in the Nordic countries should put more attention to the NECD and consult with relevant stakeholders, researchers and farmer's associations on which measures to prioritize to achieve these goals on time. It is important to pick remaining low hanging fruits through use of the most cost effective mitigation measures. We suggest that N application rate and its timing should be in accordance with the crop need and carrying capacity of environmental recipients. Also, the choice of application technology can further reduce the risk of N losses into air and waters. This may require more region-specific solutions and knowledge-based support with tailored information in combination with further targeted subsidies or regulations.

Sammendrag

Repeat photography is an efficient method for documenting long-term landscape changes. So far, the usage of repeat photographs for quantitative analyses is limited to approaches based on manual classification. In this paper, we demonstrate the application of a convolutional neural network (CNN) for the automatic detection and classification of woody regrowth vegetation in repeat landscape photographs. We also tested if the classification results based on the automatic approach can be used for quantifying changes in woody vegetation cover between image pairs. The CNN was trained with 50 × 50 pixel tiles of woody vegetation and non-woody vegetation. We then tested the classifier on 17 pairs of repeat photographs to assess the model performance on unseen data. Results show that the CNN performed well in differentiating woody vegetation from non-woody vegetation (accuracy = 87.7%), but accuracy varied strongly between individual images. The very similar appearance of woody vegetation and herbaceous species in photographs made this a much more challenging task compared to the classification of vegetation as a single class (accuracy = 95.2%). In this regard, image quality was identified as one important factor influencing classification accuracy. Although the automatic classification provided good individual results on most of the 34 test photographs, change statistics based on the automatic approach deviated from actual changes. Nevertheless, the automatic approach was capable of identifying clear trends in increasing or decreasing woody vegetation in repeat photographs. Generally, the use of repeat photography in landscape monitoring represents a significant added value to other quantitative data retrieved from remote sensing and field measurements. Moreover, these photographs are able to raise awareness on landscape change among policy makers and public as well as they provide clear feedback on the effects of land management.

Sammendrag

A complete diallel cross was made among nine Betula pendula trees growing in a natural population and a trial was planted on agricultural soil at one site. This exceptional trial has provided estimates of genetic parameters that can only be estimated in complete diallels. Traits measured were height and diameter during a period of 37 years, and assessments were made of bud burst, leaf abscission and rust infection at the early ages. All traits showed genetic variation and the variance components of general combining ability (GCA) effects were dominating, with heritability estimates of 0.16 and 0.23 for height and diameter at age six years. The best-growing families could be identified at that age. At age 37 years, when the trial had been thinned twice, the offspring from the highest and lowest ranked parent for growth contributed with 19% and 6% of the total volume of the stand, respectively. The GCA effects were also highly significant for the assessment traits, but with an interaction with year for bud burst. High values of estimates of genetic correlations proved that bud burst, leaf abscission and rust infection are interrelated, and also to some extent with growth traits. Families with an early bud burst were tallest, were less affected by the rust fungus and kept their leaves later in the autumn.

Sammendrag

Temperature during seed maturation can induce an epigenetic memory effect in growth phenology of Norway spruce (Picea abies (L.) Karst.) that lasts for several years. To quantify the epigenetic modifications induced by natural climatic variation, common garden experiments with plants originating from different provenances and seed years were performed. Plants from warmer seed years showed delayed phenology with later bud flush, bud set and growth cessation. This effect was quantified by linear models of phenology traits as a function of climate indices for the origin and seed year of the plants. Significant effects of the temperature during seed production (seed year) was found for the bud set in seedlings in their first growing season and for bud flush and growth cessation in the 7th-8th growing season from seed. The models suggest that growth start and growth cessation are delayed 0.7–1.8 days per 100 additional degree days experienced by the seed during embryo development and seed maturation. Models that include factors that are known to induce epigenetic effects could be used to better predict future performance of forest reproductive material.

Til dokument

Sammendrag

Pastures are botanically diverse and difficult to characterize. Digital modeling of pasture biomass and quality by non-destructive methods can provide highly valuable support for decision-making. This study aimed to evaluate aerial and on-ground methods to characterize grass ley fields, estimating plant height, biomass and volume, using digital grass models. Two fields were sampled, one timothy-dominant and the other ryegrass-dominant. Both sensing systems allowed estimation of biomass, volume and plant height, which were compared with ground truth, also taking into consideration basic economical aspects. To obtain ground-truth data for validation, 10 plots of 1 m2 were manually and destructively sampled on each field. The studied systems differed in data resolution, thus in estimation capability. There was a reasonably good agreement between the UAV-based, the RGB-D-based estimates and the manual height measurements on both fields. RGB-D-based estimation correlated well with ground truth of plant height (R 2 > 0.80) for both fields, and with dry biomass (R 2 = 0.88), only for the timothy field. RGB-D-based estimation of plant volume for ryegrass showed a high agreement (R 2 = 0.87). The UAV-based system showed a weaker estimation capability for plant height and dry biomass (R 2 < 0.6). UAV-systems are more affordable, easier to operate and can cover a larger surface. On-ground techniques with RGB-D cameras can produce highly detailed models, but with more variable results than UAV-based models. On-ground RGB-D data can be effectively analysed with open source software, which is a cost reduction advantage, compared with aerial image analysis. Since the resolution for agricultural operations does not need fine identification the end-details of the grass plants, the use of aerial platforms could result a better option in grasslands.

Til dokument

Sammendrag

Upon herbivory, plants release herbivore-induced plant volatiles (HIPVs), which induce chemical defenses in the plant as well as recruit natural enemies. However, whether synthetic HIPVs can be employed to enhance biological control in a cultivated crop in the field is yet to be explored. Here we show that a biodegradable formulation loaded with induced and food-signaling volatiles can selectively recruit the common green lacewing, Chrysoperla carnea, and reduce pest population under field conditions. In apple orchards, the new formulation attracted lacewing adults over a 4-week period, which correlated well with independent assessments of the longevity of the slow-release matrix measured through chemical analyses. In barley, lacewing eggs and larvae were significantly more abundant in treated plots, whereas a significant reduction of two aphid species was measured (98.9% and 93.6% of population reduction, for Sitobion avenae and Rhopalosiphum padi, respectively). Results show the potential for semiochemical-based targeted recruitment of lacewings to enhance biological control of aphids in a field setting. Further research should enhance selective recruitment by rewarding attracted natural enemies and by optimizing the application technique.

Til dokument

Sammendrag

The transmission of pathogens from partially or fully treated wastewater to different water sources are a pervasive risk to public health. To reduce the risk, the integration of source separation, on-site greywater treatment system, and an efficient disposal scheme are the most critical approaches. This study intended to evaluate the removal of nutrient and microbial suspension in the filtration systems used for effluent disposal. The effluent from an on-site greywater treatment plant was loaded into the columns, and the effluent from the columns was monitored for nutrients, total coliform bacteria, Escherichia coli, and Salmonella typhimurium phage 28B (St28B) for one year. Thus, from the range of infiltration systems tested, column-B (15 cm layer of each, Filtralite, fine sand, and till soil) showed the highest removal of total coliforms and E. coli, 3–4 log10 reduction, while the lowest removal observed in column-C (a layer of 25 cm crushed stone and 50 cm till soil), 2–3 log10 reduction. The virus removal efficiency of the columns reduced from 19% to 70% during the simulation of a rainfall event. Moreover, the rise of St28B concentration after rainfall experiment may probably the sign of detachment enhanced by low ionic strength rainwater.

Til dokument

Sammendrag

While every society can be exposed to heatwaves, some people suffer far less harm and recover more quickly than others from their occurrence. Here we project indicators of global heatwave risk associated with global warming of 1.5 and 2 °C, specified by the Paris agreement, for two future pathways of societal development representing low and high vulnerability conditions. Results suggest that at the 1.5 °C warming level, heatwave exposure in 2075 estimated for the population living in low development countries is expected to be greater than exposure at the warming level of 2 °C for the population living in very high development countries. A similar result holds for an illustrative heatwave risk index. However, the projected difference in heatwave exposure and the illustrative risk index for the low and very high development countries will be significantly reduced if global warming is stabilized below 1.5 °C, and in the presence of rapid social development.

Til dokument

Sammendrag

Deforestation and forest degradation (D&D) in the tropics have continued unabated and are posing serious threats to forests and the livelihoods of those who depend on forests and forest resources. Smallholder farmers are often implicated in scientific literature and policy documents as important agents of D&D. However, there is scanty information on why smallholders exploit forests and what the key drivers are. We employed behavioral sciences approaches that capture contextual factors, attitudinal factors, and routine practices that shape decisions by smallholder farmers. Data was collected using household surveys and focus group discussions in two case study forests—Menagesha Suba Forest in Ethiopia and Maasai Mau Forest in Kenya. Our findings indicate that factors that forced farmers to engage in D&D were largely contextual, i.e., sociodemographic, production factors constraint, as well as policies and governance issues with some influences of routine practices such as wood extraction for fuelwood and construction. Those factors can be broadly aggregated as necessity-driven, market-driven, and governance-driven. In the forests studied, D&D are largely due to necessity needs and governance challenges. Though most factors are intrinsic to smallholders’ context, the extent and impact on D&D were largely aggravated by factors outside the forest landscape. Therefore, policy efforts to reduce D&D should carefully scrutinize the context, the factors, and the associated enablers to reduce forest losses under varying socioeconomic, biophysical, and resource governance conditions.

Til dokument

Sammendrag

Introduction Blackcurrant (Ribes nigrum L.) is an excellent example of a “super fruit” with potential health benefits. Both genotype and cultivation environment are known to affect the chemical composition of blackcurrant, especially ascorbic acid and various phenolic compounds. Environmental conditions, like temperature, solar radiation and precipitation can also have significant impact on fruit chemical composition. The relevance of the study is further accentuated by the predicted and ongoing changes in global climate. Objectives The aim of the present study was to provide new knowledge and a deeper understanding of the effects of post flowering environmental conditions, namely temperature and day length, on fruit quality and chemical composition of blackcurrant using an untargeted high performance liquid chromatography–photo diode array–mass spectrometry (HPLC– PDA–MS) metabolomics approach. Methods A phytotron experiment with cultivation of single-stemmed potted plants of blackcurrant cv. Narve Viking was conducted using constant temperatures of 12, 18 or 24 °C and three different photoperiods (short day, short day with night interruption, and natural summer daylight conditions). Plants were also grown under ambient outdoor conditions. Ripe berries were analysed using an untargeted HPLC–PDA–MS metabolomics approach to detect the presence and concentration of molecules as affected by controlled climatic factors. Results The untargeted metabolomics dataset contained a total of 7274 deconvolved retention time-m/z pairs across both electrospray ionisation (ESI) positive and negative polarities, from which 549 metabolites were identified or minimally annotated based upon accurate mass MS. Conventional principal component analysis (PCA) in combination with the Friedman significance test were applied to first identify which metabolites responded to temperature in a linear fashion. Multi-block hierarchical PCA in combination with the Friedman significance test was secondly applied to identify metabolites that were responsive to different day length conditions. Temperature had significant effect on a total of 365 metabolites representing a diverse range of chemical classes. It was observed that ripening of the blackcurrant berries under ambient conditions, compared to controlled conditions, resulted in an increased accumulation of 34 annotated metabolites, mainly anthocyanins and flavonoids. 18 metabolites were found to be regulated differentially under the different daylength conditions. Moreover, based upon the most abundant anthocyanins, a comparison between targeted and untargeted analyses, revealed a close convergence of the two analytical methods. Therefore, the study not just illustrates the value of non-targeted metabolomics approaches with respect to the huge diversity and numbers of significantly changed metabolites detected (and which would be missed by conventional targeted analyses), but also shows the validity of the non-targeted approach with respect to its precision compared to targeted analyses. Conclusions Blackcurrant maturation under controlled ambient conditions revealed a number of insightful relationships between environment and chemical composition of the fruit. A prominent reduction of the most abundant anthocyanins under the highest temperature treatments indicated that blackcurrant berries in general may accumulate lower total anthocyanins in years with extreme hot summer conditions. HPLC–PDA–MS metabolomics is an excellent method for broad analysis of chemical composition of berries rich in phenolic compounds. Moreover, the experiment in controlled phytotron conditions provided additional knowledge concerning plant interactions with the environment.

Til dokument

Sammendrag

The nitrogen cycle has been radically changed by human activities1 . China consumes nearly one third of the world’s nitrogen fertilizers. The excessive application of fertilizers2,3 and increased nitrogen discharge from livestock, domestic and industrial sources have resulted in pervasive water pollution. Quantifying a nitrogen ‘boundary’4 in heterogeneous environments is important for the effective management of local water quality. Here we use a combination of water-quality observations and simulated nitrogen discharge from agricultural and other sources to estimate spatial patterns of nitrogen discharge into water bodies across China from 1955 to 2014. We find that the critical surface-water quality standard (1.0 milligrams of nitrogen per litre) was being exceeded in most provinces by the mid-1980s, and that current rates of anthropogenic nitrogen discharge (14.5 ± 3.1 megatonnes of nitrogen per year) to fresh water are about 2.7 times the estimated ‘safe’ nitrogen discharge threshold (5.2 ± 0.7 megatonnes of nitrogen per year). Current efforts to reduce pollution through wastewater treatment and by improving cropland nitrogen management can partially remedy this situation. Domestic wastewater treatment has helped to reduce net discharge by 0.7 ± 0.1 megatonnes in 2014, but at high monetary and energy costs. Improved cropland nitrogen management could remove another 2.3 ± 0.3 megatonnes of nitrogen per year—about 25 per cent of the excess discharge to fresh water. Successfully restoring a clean water environment in China will further require transformational changes to boost the national nutrient recycling rate from its current average of 36 per cent to about 87 per cent, which is a level typical of traditional Chinese agriculture. Although ambitious, such a high level of nitrogen recycling is technologically achievable at an estimated capital cost of approximately 100 billion US dollars and operating costs of 18–29 billion US dollars per year, and could provide co-benefits such as recycled wastewater for crop irrigation and improved environmental quality and ecosystem services.