Våre poenggivende vitenskapelige publikasjoner
Listen inneholder vitenskapelige artikler, bøker og kapitler som er publisert i poenggivende tidsskrifter og forlag. Det nasjonale registeret over vitenskapelige tidsskrifter er utgangspunktet for hvilke vitenskapelige publikasjoner som gir uttelling i finansieringssystemet. Listen er sortert etter siste registrerte publikasjon.
Våre poenggivende vitenskapelige publikasjoner
Filtrér
2024 (189)
Forfattere
Yibiao Zou Constantin M. Zohner Colin Averill Haozhi Ma Julian Merder Miguel Berdugo Lalasia Bialic-Murphy Lidong Mo Philipp Brun Niklaus E. Zimmermann Jingjing Liang Sergio de-Miguel Gert-Jan Nabuurs Peter B. Reich Ulo Niinements Jonas Dahlgren Gerald Kändler Sophia Ratcliffe Paloma Ruiz-Benito Miguel Angel de Zavala Meinrad Abegg Yves C. Adou Yao Giorgio Alberti Angelica M. Almeyda Zambrano Braulio Vilchez Alvarado Esteban Alvarez-Dávila Patricia Alvarez-Loayza Luciana F. Alves Christian Ammer Clara Antón Fernández Alejandro Araujo-Murakami Luzmila Arroyo Valerio Avitabile Gerardo A. Aymard Timothy R. Baker Radomir Bałazy Olaf Banki Jorcely G. Barroso Meredith L. Bastian Jean-Francois Bastin Luca Birigazzi Philippe Birnbaum Robert Bitariho Pascal Boeckx Frans Bongers Olivier Bouriaud Pedro H. S. Brancalion Susanne Brandl Francis Q. Brearley Roel Brienen Eben N. Broadbent Helge Bruelheide Filippo Bussotti Roberto Cazzolla Gatti Ricardo G. César Goran Cesljar Robin Chazdon Han Y. H. Chen Chelsea Chisholm Hyunkook Cho Emil Cienciala Connie Clark David Clark Gabriel D. Colletta David A. Coomes Fernando Cornejo Valverde José J. Corral-Rivas Philip M. Crim Jonathan R. Cumming Selvadurai Dayanandan André L. de Gasper Mathieu Decuyper Géraldine Derroire Ben DeVries Ilija Djordjevic Jiri Dolezal Aurélie Dourdain Nestor Laurier Engone Obiang Brian J. Enquist Teresa J. Eyre Adandé Belarmain Fandohan Tom M. Fayle Ted R. Feldpausch Leandro V. Ferreira Leena Finér Markus Fischer Christine Fletcher Jonas Fridman Lorenzo Frizzera Javier G. P. Gamarra Damiano Gianelle Henry B. Glick David J. Harris Andrew Hector Andreas Hemp Geerten Hengeveld Bruno Hérault John L. Herbohn Martin Herold Annika Hillers Eurídice N. Honorio Coronado Cang Hui Thomas Ibanez Amaral Iêda Nobuo Imai Andrzej M. Jagodziński Bogdan Jaroszewicz Vivian Kvist Johannsen Carlos A. Joly Tommaso Jucker Ilbin Jung Viktor Karminov Kuswata Kartawinata Elizabeth Kearsley David Kenfack Deborah K. Kennard Sebastian Kepfer-Rojas Gunnar Keppel Mohammed Latif Khan Timothy J. Killeen Hyun Seok Kim Kanehiro Kitayama Michael Köhl Henn Korjus Florian Kraxner Diana Laarmann Mait Lang Simon L. Lewis Huicui Lu Natalia V. Lukina Brian S. Maitner Yadvinder Malhi Eric Marcon Beatriz Schwantes Marimon Ben Hur Marimon-Junior Andrew R. Marshall Emanuel H. Martin Dmitry Kucher Jorge A. Meave Omar Melo-Cruz Casimiro Mendoza Cory Merow Abel Monteagudo Mendoza Vanessa S. Moreno Sharif A. Mukul Philip Mundhenk María Guadalupe Nava-Miranda David Neill Victor J. Neldner Radovan V. Nevenic Michael R. Ngugi Pascal A. Niklaus Jacek Oleksyn Petr Ontikov Edgar Ortiz-Malavasi Yude Pan Alain Paquette Alexander Parada-Gutierrez Elena I. Parfenova Minjee Park Marc Parren Narayanaswamy Parthasarathy Pablo L. Peri Sebastian Pfautsch Oliver L. Phillips Nicolas Picard Maria Teresa T. F. Piedade Daniel Piotto Nigel C. A. Pitman Irina Polo Lourens Poorter Axel Dalberg Poulsen John R. Poulsen Hans Pretzsch Freddy Ramirez Arevalo Zorayda Restrepo-Correa Mirco Rodeghiero Samir G. Rolim Anand Roopsind Francesco Rovero Ervan Rutishauser Purabi Saikia Christian Salas-Eljatib Philippe Saner Peter Schall Mart-Jan Schelhaas Dmitry Schepaschenko Michael Scherer-Lorenzen Bernhard Schmid Jochen Schöngart Eric B. Searle Vladimír Seben Josep M. Serra-Diaz Douglas Sheil Anatoly Z. Shvidenko Javier E. Silva-Espejo Marcos Silveira James Singh Plinio Sist Ferry Slik Bonaventure Sonké Alexandre F. Souza Stanislaw Miscicki Krzysztof J. Stereńczak Jens-Christian Svenning Miroslav Svoboda Ben Swanepoel Natalia Targhetta Nadja Tchebakova Hans ter Steege Raquel Thomas Elena Tikhonova Peter M. Umunay Vladimir A. Usoltsev Renato Valencia Fernando Valladares Fons van der Plas Tran Van Do Michael E. van Nuland Rodolfo M. Vasquez Hans Verbeeck Helder Viana Alexander C. Vibrans Simone Vieira Klaus von Gadow Hua-Feng Wang James V. Watson Gijsbert D. A. Werner Bertil Westerlund Susan K. Wiser Florian Wittmann Hannsjoerg Woell Verginia Wortel Roderik Zagt Tomasz Zawiła-Niedźwiecki Chunyu Zhang Xiuhai Zhao Mo Zhou Zhi-Xin Zhu Irie C. Zo-Bi Thomas W. CrowtherSammendrag
The emergence of alternative stable states in forest systems has significant implications for the functioning and structure of the terrestrial biosphere, yet empirical evidence remains scarce. Here, we combine global forest biodiversity observations and simulations to test for alternative stable states in the presence of evergreen and deciduous forest types. We reveal a bimodal distribution of forest leaf types across temperate regions of the Northern Hemisphere that cannot be explained by the environment alone, suggesting signatures of alternative forest states. Moreover, we empirically demonstrate the existence of positive feedbacks in tree growth, recruitment and mortality, with trees having 4–43% higher growth rates, 14–17% higher survival rates and 4–7 times higher recruitment rates when they are surrounded by trees of their own leaf type. Simulations show that the observed positive feedbacks are necessary and sufficient to generate alternative forest states, which also lead to dependency on history (hysteresis) during ecosystem transition from evergreen to deciduous forests and vice versa. We identify hotspots of bistable forest types in evergreen-deciduous ecotones, which are likely driven by soil-related positive feedbacks. These findings are integral to predicting the distribution of forest biomes, and aid to our understanding of biodiversity, carbon turnover, and terrestrial climate feedbacks.
Forfattere
Iris Hordijk Lalasia Bialic-Murphy Thomas Lauber Devin Routh Lourens Poorter Malin C. Rivers Hans ter Steege Jingjing Liang Peter B. Reich Sergio de-Miguel Gert-Jan Nabuurs Javier G. P. Gamarra Han Y. H. Chen Mo Zhou Susan K. Wiser Hans Pretzsch Alain Paquette Nicolas Picard Bruno Hérault Jean-Francois Bastin Giorgio Alberti Meinrad Abegg Yves C. Adou Yao Angelica M. Almeyda Zambrano Braulio V. Alvarado Esteban Alvarez-Davila Patricia Alvarez-Loayza Luciana F. Alves Christian Ammer Clara Antón Fernández Alejandro Araujo-Murakami Luzmila Arroyo Valerio Avitabile Gerardo A. Aymard Corredor Timothy Baker Olaf Banki Jorcely Barroso Meredith L. Bastian Luca Birigazzi Philippe Birnbaum Robert Bitariho Pascal Boeckx Frans Bongers Olivier Bouriaud Pedro H. S. Brancalion Susanne Brandl Roel Brienen Eben N. Broadbent Helge Bruelheide Filippo Bussotti Roberto Cazzolla Gatti Ricardo G. Cesar Goran Cesljar Robin Chazdon Chelsea Chisholm Emil Cienciala Connie J. Clark David B. Clar Gabriel Colletta David Coomes Fernando Cornejo Valverde Jose J. Corral-Rivas Philip Crim Jonathan Cumming Selvadurai Dayanandan André L. de Gasper Mathieu Decuyper Géraldine Derroire Ben DeVries Ilija Djordjevic Amaral Iêda Aurélie Dourdain Jiri Dolezal Nestor Laurier Engone Obiang Brian Enquist Teresa Eyre Adandé Belarmain Fandohan Tom M. Fayle Leandro V. Ferreira Ted R. Feldpausch Leena Finér Markus Fischer Christine Fletcher Lorenzo Frizzera Damiano Gianelle Henry B. Glick David Harris Andrew Hector Andreas Hemp Geerten Hengeveld John Herbohn Annika Hillers Eurídice N. Honorio Coronado Cang Hui Hyunkook Cho Thomas Ibanez Ilbin Jung Nobuo Imai Andrzej M. Jagodzinski Bogdan Jaroszewicz Vivian Johannsen Carlos A. Joly Tommaso Jucker Viktor Karminov Kuswata Kartawinata Elizabeth Kearsley David Kenfack Deborah Kennard Sebastian Kepfer-Rojas Gunnar Keppel Mohammed Latif Khan Timothy Killeen Hyun Seok Kim Kanehiro Kitayama Michael Köhl Henn Korjus Florian Kraxner Diana Laarmann Mait Lang Simon Lewis Huicui Lu Natalia Lukina Brian Maitner Yadvinder Malhi Eric Marcon Beatriz Schwantes Marimon Ben Hur Marimon-Junior Andrew Robert Marshall Emanuel Martin Olga Martynenko Jorge A. Meave Omar Melo-Cruz Casimiro Mendoza Cory Merow Stanislaw Miscicki Abel Monteagudo Mendoza Vanessa Moreno Sharif A. Mukul Philip Mundhenk Maria G. Nava-Miranda David Neill Victor Neldner Radovan Nevenic Michael Ngugi Pascal A. Niklaus Jacek Oleksyn Petr Ontikov Edgar Ortiz-Malavasi Yude Pan Alexander Parada-Gutierrez Elena Parfenova Minjee Park Marc Parren Narayanaswamy Parthasarathy Pablo L. Peri Sebastian Pfautsch Oliver L. Phillips Maria Teresa Piedade Daniel Piotto Nigel C. A. Pitman Irina Polo Axel Dalberg Poulsen John R. Poulsen Freddy Ramirez Arevalo Zorayda Restrepo-Correa Mirco Rodeghiero Samir Rolim Anand Roopsind Francesco Rovero Ervan Rutishauser Purabi Saikia Christian Salas-Eljatib Peter Schall Dmitry Schepaschenko Michael Scherer-Lorenzen Bernhard Schmid Jochen Schöngart Eric B. Searle Vladimír Seben Josep M. Serra-Diaz Douglas Sheil Anatoly Shvidenko Javier Silva-Espejo Marcos Silveira James Singh Plinio Sist Ferry Slik Bonaventure Sonké Alexandre F. Souza Krzysztof Stereńczak Jens-Christian Svenning Miroslav Svoboda Ben Swanepoel Natalia Targhetta Nadja Tchebakova Raquel Thomas Elena Tikhonova Peter Umunay Vladimir Usoltsev Renato Valencia Fernando Valladares Fons van der Plas Tran Van Do Michael E. Van Nuland Rodolfo Vasquez Martinez Hans Verbeeck Helder Viana Alexander C. Vibrans Simone Vieira Klaus von Gadow Hua-Feng Wang James Watson Gijsbert D. A. Werner Florian Wittmann Verginia Wortel Roderick Zagt Tomasz Zawila-Niedzwiecki Chunyu Zhang Xiuhai Zhao Zhi-Xin Zhu Irie Casimir Zo-Bi Daniel S. Maynard Thomas W. CrowtherSammendrag
Aim Ecological and anthropogenic factors shift the abundances of dominant and rare tree species within local forest communities, thus affecting species composition and ecosystem functioning. To inform forest and conservation management it is important to understand the drivers of dominance and rarity in local tree communities. We answer the following research questions: (1) What are the patterns of dominance and rarity in tree communities? (2) Which ecological and anthropogenic factors predict these patterns? And (3) what is the extinction risk of locally dominant and rare tree species? Location Global. Time period 1990–2017. Major taxa studied Trees. Methods We used 1.2 million forest plots and quantified local tree dominance as the relative plot basal area of the single most dominant species and local rarity as the percentage of species that contribute together to the least 10% of plot basal area. We mapped global community dominance and rarity using machine learning models and evaluated the ecological and anthropogenic predictors with linear models. Extinction risk, for example threatened status, of geographically widespread dominant and rare species was evaluated. Results Community dominance and rarity show contrasting latitudinal trends, with boreal forests having high levels of dominance and tropical forests having high levels of rarity. Increasing annual precipitation reduces community dominance, probably because precipitation is related to an increase in tree density and richness. Additionally, stand age is positively related to community dominance, due to stem diameter increase of the most dominant species. Surprisingly, we find that locally dominant and rare species, which are geographically widespread in our data, have an equally high rate of elevated extinction due to declining populations through large-scale land degradation. Main conclusions By linking patterns and predictors of community dominance and rarity to extinction risk, our results suggest that also widespread species should be considered in large-scale management and conservation practices.
Forfattere
Melinda D. Smith Kate D. Wilkins Martin C. Holdrege Peter Wilfahrt Scott L. Collins Alan K. Knapp Osvaldo E. Sala Jeffrey S. Dukes Richard P. Phillips Laura Yahdjian Laureano A. Gherardi Timothy Ohlert Claus Beier Lauchlan H. Fraser Anke Jentsch Michael E. Loik Fernando T. Maestre Sally A. Power Qiang Yu Andrew J. Felton Seth M. Munson Yiqi Luo Hamed Abdoli Mehdi Abedi Concepción L. Alados Juan Alberti Moshe Alon Hui An Brian Anacker Maggie Anderson Harald Auge Seton Bachle Khadijeh Bahalkeh Michael Bahn Amgaa Batbaatar Taryn Bauerle Karen H. Beard Kai Behn Ilka Beil Lucio Biancari Irmgard Blindow Viviana Florencia Bondaruk Elizabeth T. Borer Edward W. Bork Carlos Martin Bruschetti Kerry M. Byrne James F. Cahill Dianela A. Calvo Michele Carbognani Augusto Cardoni Cameron N. Carlyle Miguel Castillo-Garcia Scott X. Chang Jeff Chieppa Marcus V. Cianciaruso Ofer Cohen Amanda L. Cordeiro Daniela F. Cusack Sven Dahlke Pedro Daleo Carla M. D'Antonio Lee H. Dietterich Tim S. Doherty Maren Dubbert Anne Ebeling Nico Eisenhauer Felícia M. Fischer Tai G.W. Forte Tobias Gebauer Beatriz Gozalo Aaron C. Greenville Karlo G. Guidoni-Martins Heather J. Hannusch Siri Vatsø Haugum Yann Hautier Mariet Hefting Hugh A.L. Henry Daniela Hoss Oscar Iribarne Forest Isbell Yari Johnson Samuel Jordan Eugene F. Kelly Kaitlin Kimmel Juergen Kreyling György Kröel-Dulay Johannes Ingrisch Alicia Kröpfl Angelika Kübert Andrew Kulmatiski Eric G. Lamb Klaus Steenberg Larsen Julie Larson Cintia V. Leder Anja Linstädter Jielin Liu Shirong Liu Alexandra G. Lodge Grisel Longo Alejandro Loydi Junwei Luan Jason Lawson Frederick Curtis Lubbe Craig Macfarlane Kathleen Mackie-Haas Andrey V. Malyshev Adrián Maturano-Ruiz Thomas Merchant Daniel B. Metcalfe Akira S. Mori Edwin Mudongo Gregory S. Newman Uffe N. Nielsen Dale Nimmo Yujie Niu Paola Nobre Rory C. O'Connor Romà Ogaya Gastón R. Oñatibia Ildikó Orbán Brooke Osborne Rafael Otfinowski Meelis Pärtel Josep Penuelas Pablo L. Peri Guadalupe Peter Alessandro Petraglia Catherine Picon-Cochard Valério D. Pillar Juan Manuel Piñeiro-Guerra Laura W. Ploughe Robert M. Plowes Cristy Portales-Reyes Suzanne M. Prober Yolanda Pueyo Sasha C. Reed Euan G. Ritchie Dana Aylén Rodríguez William E. Rogers Christiane Roscher Ana M. Sánchez Bráulio A. Santos María Cecilia Scarfó Eric W. Seabloom Baoku Shi Lara Souza Andreas Stampfli Rachel J. Standish Marcelo Sternberg Wei Sun Marie Sünnemann Michelle Tedder Pål Thorvaldsen Dashuan Tian Katja Tielbörger Alejandro Valdecantos Liesbeth van den Brink Vigdis Vandvik Mathew R. Vankoughnett Liv Guri Velle Changhui Wang Yi Wang Glenda M. Wardle Christiane Werner Cunzheng Wei Georg Wiehl Jennifer L. Williams Amelia A. Wolf Michaela Zeiter Fawei Zhang Juntao Zhu Ning Zong Xiaoan ZuoSammendrag
Climate change is increasing the frequency and severity of short-term (~1 y) drought events—the most common duration of drought—globally. Yet the impact of this intensification of drought on ecosystem functioning remains poorly resolved. This is due in part to the widely disparate approaches ecologists have employed to study drought, variation in the severity and duration of drought studied, and differences among ecosystems in vegetation, edaphic and climatic attributes that can mediate drought impacts. To overcome these problems and better identify the factors that modulate drought responses, we used a coordinated distributed experiment to quantify the impact of short-term drought on grassland and shrubland ecosystems. With a standardized approach, we imposed ~a single year of drought at 100 sites on six continents. Here we show that loss of a foundational ecosystem function—aboveground net primary production (ANPP)—was 60% greater at sites that experienced statistically extreme drought (1-in-100-y event) vs. those sites where drought was nominal (historically more common) in magnitude (35% vs. 21%, respectively). This reduction in a key carbon cycle process with a single year of extreme drought greatly exceeds previously reported losses for grasslands and shrublands. Our global experiment also revealed high variability in drought response but that relative reductions in ANPP were greater in drier ecosystems and those with fewer plant species. Overall, our results demonstrate with unprecedented rigor that the global impacts of projected increases in drought severity have been significantly underestimated and that drier and less diverse sites are likely to be most vulnerable to extreme drought.
Sammendrag
Grasslands serve specific purposes in different regions and in various ways, and their ecological and economic importance can vary depending on the specific type of grassland and the region in question. Grasslands can be highly multifunctional on a local-scale and across scales through various interactions of management and site conditions. The present study spans from the northern Arctic region, over central and eastern to the southern Mediterranean parts of Europe. It gives an overview of the diversity of grassland systems, in terms of management types and grassland products, as a starting point to present use cases of specific roles typical for distinct regions. It then discusses roles and adaptation possibilities under the conditions of prospected climate change in chosen regions.
Sammendrag
Manure spreading often leads to nutrient losses with negative environmental impacts, especially in cold climates where harsh winters can affect grass sward density. Nutrient efficiency in cattle slurry depends on the plant coverage at the start of the growing season. To simulate winter damage variation, random mechanical disturbance was applied to a grass field. Aerial images were obtained and analysed using the Grasision® tool to estimate plant cover. Three fixed treatments with uniform cattle slurry and N fertilizer application across all plots, and two treatments adjusting slurry and N fertilizer based on autumn or spring plant coverage were tested. Above-ground yield was measured post-first and second cut. Adjusting N rates based on spring plant coverage or using a low N rate resulted in similar agronomic N use efficiency as high N application rates, albeit with lower dry matter yield.
Sammendrag
This study investigates cow behaviour when visiting two GreenFeed Emission Monitoring (GEM) units within a Part-Time Grazing (PTG) system. Two separate PTG systems were assessed in Sweden and Norway, involving Nordic Red and Norwegian Red dairy cows, respectively. In Sweden, 24 cows were allocated to treatments with restricted access to pasture, either daytime or nighttime grazing. Meanwhile, the Norwegian PTG involved 33 cows with free pasture access, categorized by varying training levels (Partially or Fully). In both PTG systems, cows were exposed to GEM units positioned indoors (Indoor) and in the grazing pastures (Pasture), with individual visitations recorded. Significant variations in visitation patterns were observed. In the restricted access PTG, Nighttime grazing access cows exhibited reduced visits to the Indoor GEM unit but increased visits to the Pasture GEM unit compared to Daytime grazing. Conversely, within the free access PTG, fully trained cows demonstrated elevated visits to the pasture GEM unit and total visits compared to their partially trained counterparts. These findings highlight the influence of temporal conditions and training levels on cow-visiting behaviour within PTG systems.
Forfattere
Geir-Harald Strand Eva Solbjørg Flo Heggem Linda Aune-Lundberg Agata Hościło Adam WaśniewskiSammendrag
Land cover maps are frequently produced via the classification of satellite imagery. There is a need for a practicable and automated approach for the generalization of these land cover classification results into scalable, digital maps while minimizing information loss. We demonstrate a method where a land cover raster map produced using the classification of Sentinel 2 imagery was generalized to obtain a simpler, more readable land cover map. A replicable procedure following a formal generalization framework was applied. The result of the initial land cover classification was separated into binary layers representing each land cover class. Each binary layer was simplified via structural generalization. The resulting images were merged to create a new, simplified land cover map. This map was enriched by adding statistical information from the original land cover classification result, describing the internal land cover distribution inside each polygon. This enrichment preserved the original statistical information from the classified image and provided an environment for more complex cartography and analysis. The overall accuracy of the generalized map was compared to the accuracy of the original, classified land cover. The accuracy of the land cover classification in the two products was not significantly different, showing that the accuracy did not deteriorate because of the generalization.
Forfattere
Sunil Mundra Dinesh Sanka Loganathachetti Håvard Kauserud Anna Maria Fiore-Donno Tonje Økland Jørn-Frode Nordbakken O. Janne KjønaasSammendrag
Large-scale replacements of native birch with spruce have been carried out in Western Norway for economic reasons. This tree species shift potentially affects biotic components such as the eucaryome, consisting of microscopic animals (Metazoa), protists and fungi, which are key players in the functioning of forest ecosystem. The impact on the belowground eukaryome and its interactions with vegetation and soil properties is not well assessed. We examined the impact of replacing native birch with Norway spruce plantations on the eukaryome of the boreal forest floor in Western Norway using 18S rDNA metabarcoding. The tree species shift from birch to spruce had significant impacts on the eukaryome at both taxonomic (Metazoa) and functional categories (phagotrophs, phototrophs, parasites and osmotrophs). The distinct differences in eukaryome communities were related to changes in understorey vegetation biomass and soil chemistry following the tree species shift. This had a negative effect on eukaryome richness, particularly affecting phagotrophs and parasites, while the opposite was observed for osmotroph richness. Our results indicated that the spruce plantations altered the eukaryome communities and their food-web patterns compared to what was found in the native birch forest soil. This information should be taken into consideration in forest management planning.
Forfattere
Xabier Díaz de Otálora Agustín del Prado Federico Dragoni Lorraine Balaine Guillermo Pardo Wilfried Winiwarter Anna Sandrucci Giorgio Ragaglini Tina Kabelitz Marek Kieronczyk Grete H. M. Jørgensen Fernando Estellés Barbara AmonSammendrag
Understanding the environmental consequences associated with dairy cattle production systems is crucial for the implementation of targeted strategies for emission reduction. However, few studies have modelled the effect of tailored emission mitigation options across key European dairy production systems. Here, we assess the single and combined effect of six emission mitigation practises on selected case studies across Europe through the Sustainable and Integrated Management System for Dairy Production model. This semi-mechanistic model accounts for the interacting flows from a whole-farm perspective simulating the environmental losses in response to different management strategies and site-specific conditions. The results show how reducing the crude protein content of the purchased fraction of the diet was an adequate strategy to reduce the greenhouse gas and nitrogen emission intensity in all systems. Furthermore, implementing an anaerobic digestion plant reduced the greenhouse gas emissions in all tested case studies while increasing the nitrogen emissions intensity, particularly when slurry was applied using broadcast. Regarding the productivity increase, contrasting effects were observed amongst the case studies modelled. Moreover, shallow slurry injection effectively mitigated the intensity of nitrogen losses from the fields due to strong reductions in ammonia volatilisation. When substituting urea with ammonium nitrate as mineral fertiliser, site-specific conditions affected the mitigation potential observed, discouraging its application on sandy-loam soils. Rigid slurry covers effectively reduced the storage-related nitrogen emissions intensity while showing a minor effect on total greenhouse gas emission intensity. In addition, our results provide novel evidence regarding the advantages of cumulative implementation of adapted mitigation options to offset the negative trade-offs of single-option applications (i.e. slurry covers or anaerobic digestion and slurry injection). Through this study, we contribute to a better understanding of the effect of emission mitigation options across dairy production systems in Europe, thus facilitating the adoption of tailored and context-specific emission reduction strategies.
Forfattere
Maja Natić Dragana Dabić Zagorac Mihajlo Jakanovski Anita Smailagić Slavica Čolić Mekjell Meland Milica Fotirić AkšićSammendrag
In this work, 12 apple cultivars grown organically in three regions of Norway (Telemark, Ullensvang, Viken) were analyzed in terms of fruit quality, with the aim of equating different growing regions under specific climatic conditions. Apples were analyzed for concentration levels of minerals, sugars, sugar alcohols, organic acids, total phenolic content (TPC), radical scavenging activity (RSA), and phenolic profiles. Discovery “Rose” from Telemark stored the highest level of minerals (24,094.5 mg/kg dry weight). Glucose, fructose, sucrose, and sorbitol were the major carbohydrates, whereas the predominant organic acids were quinic acid and malic acid. Cultivar Discovery from Ullensvang had the highest TPC (9.22 g/kg) and RSA (229.32 mmol TE/kg). Of the polyphenols quantified, chlorogenic acid and kaempferol-3-O-glucoside were the most abounded, accounting for 85.50%. Principal component analysis (PCA) shows that the Ullensvang region is the richest source of most carbohydrates, organic acids (quinic, shikimic, and galacturonic), and most polyphenols, whereas the highest content of minerals and maleic acid characterized Viken. Regardless of location, the Discovery cultivar had, on average, the highest sugar and polyphenol contents. The results obtained suggest that organic apples from Norway are a rich source of beneficial compounds that can have a positive impact on human health. In addition, these results may be useful for consumers in identifying apple cultivars with desirable characteristics and for the fruit industry in tracing back the origin of apples. The findings could also be of great interest for locations with similar climate and soil conditions worldwide.
Forfattere
Sylwia Wierzcholska Patryk Czortek Amy Elizabeth Eycott Fride Høistad Schei John-Arvid Grytnes Bogdan JaroszewiczSammendrag
Invasions are one of main drivers transforming the functions of forest ecosystems. The invasion of alien fungus Hymenoscyphus fraxineus is still reducing the abundance of Fraxinus excelsior throughout temperate Europe. F. excelsior is a tree species belonging to the group of foundation species for numerous epiphytic species. We studied the effects of F. excelsior decline on epiphytic bryophytes in the Białowieża Primeval Forest. In this forest human interference is limited, allowing us to register the natural dynamics of ash-dependent bryophyte communities. F. excelsior decline was discovered in the Białowieża Primeval Forest in 1998, and in 2016 we resurveyed a historical survey of epiphytic bryophytes, i.e. shortly before the dieback process started. Using ordination methods and mixed-effect models we assessed shifts in epiphyte bryophytes composition over time and amongst the plots with (i) historical and recent presence of F. excelsior, (ii) with recent extinction of F. excelsior, and (iii) absence of F. excelsior both historically and recently, as well as at the level of alternative tree hosts employing the paired Mann-Whitney and t-tests. F. excelsior dieback did not influence the species composition of bryophytes associated with this tree host. Despite the drastic reduction in living F. excelsior trees (85%), overall the species composition, species richness and Shannon index of F. excelsior-dwelling bryophytes did not shift significantly between two sampling periods. Similarly weak changes over time we reported for the bryophytes’ community weighted means of ecological indicator values. Equally subtle temporal shifts in epiphytes’ biodiversity were observed amongst the plots with the presence, absence, and extinction of ash, likely due to the relatively high diversity of available alternative hosts. F. excelsior-associated epiphytic bryophytes were able to exploit other niches in the microhabitat-heterogeneous Białowieża Forest ecosystem, and thus far have not suffered a reduction in biodiversity parameters at the scale of our survey. High diversity of alternative host tree species, with particular emphasis on the occurrence of pioneer trees (i.e. B. pendula and P. tremula), may maintain the epiphytic bryophyte communities, which themselves may be able to act as a source for the recovery of F. excelsior-affiliated epiphyte populations.
Forfattere
Nicola Bozzolan Frits Mohren Giacomo Grassi Mart-Jan Schelhaas Igor Staritsky Tobias Stern Mikko Peltoniemi Vladimír Šebeň Mariana Hassegawa Pieter Johannes Verkerk Marco Patacca Aris Jansons Martin Jankovský Petra Palátová Hanna Blauth Daniel McInerney Jan Oldenburger Eirik Ogner Jåstad Jaroslav Kubista Clara Antón Fernández Gert-jan NabuursSammendrag
As the overall demand for wood-based products continues to grow, questions arise on how local wood resources and industry characteristics can effectively meet this growing demand. In the European Union (EU) 550 million m3 of wood is harvested annually, and is to a large extent processed by the wood industry. Little is known about the interplay between industrial capacity and the regional availability of timber resources. We compared the capacities from the European Forest Industry Facilities Database (EUFID) with the estimated wood supply from the procurement areas around processing industries, calculated using a spatially explicit resource model (EFISCEN-Space). We found that the estimated total capacity for the available European countries is 427 M m3 roundwood equivalent (rw. Eq.) for pulp and paper (including both virgin and recycled fibres), 102 M m3 for bioenergy (only bioenergy plants), and 153 M m3 for sawmills. We then conducted an in-depth analysis of three case studies: Norway, the Czech Republic, and Germany. Given the current probability of trees being harvested (excluding disturbances) and the hypothetical optimal grading of the logs, the volume for each assortment type is closely aligned with the current capacity of each industry branch, indicating no overcapacity. We found undersupply of softwood of 3.4 M m3 for the Czech Republic, 1.5 M m3 for Norway, and 3.8 M m3 for Germany. At the same time, in Germany, we found an oversupply of hardwood of 3.0 M m3. Additionally, a substantial amount of biomass graded as bioenergy was found for Germany and the Czech Republic, potentially serving as fuelwood in households. Concerning wood procurement areas, we concluded that a fixed radius of 100 km from the facility limited the availability of raw material procurement, particularly for bioenergy and pulp and paper mills, suggesting that these two product chains use a broader procurement basin than sawlogs. This study provides a high-resolution, spatially explicit modelling methodology for assessing the interaction between potential wood harvest and industrial processing capacity, which can support projections of sustainable development of the forest industry.
Forfattere
Michal SposobSammendrag
This study aimed to evaluate and optimize trickle bed reactor (TBR) performance for biological biogas upgrading at different gas loading rates (10-35 m3/m3d) by adjusting H2 flow (H2/CO2 ratio 4-3.7) and utilizing various packing materials. The three TBR reactors operated at thermophilic conditions (50○C) with different packing materials under same gas loading rate. Obtained results indicated that optimal performance was achieved at a gas loading rate of 14.3 m3/m3d and H2/CO2 ratio of 3.7, with average CH4 concentrations in the effluent gas from 90.8 % to 91.5 %, regardless of the packing material employed. Increasing the gas loading rate resulted in decreased CH4 content (<90 %), indicating limited treatment capacity at higher loading rates. The studied packing materials had a slight impact on reactor performance indicating that the shape of the making material has a greater influence of the reactor performance. Microbial communities analyses revealed dominance of hydrogenotrophic methanogens (Methanobacterium, Methanothermobacter, and Methanoculleus). This study highlights the importance of optimizing the H2/CO2 and considering packing materials for TBR performance.
Sammendrag
River Otter (Lontra canadensis) was extirpated from Prince Edward Island (PEI) in the early 1900s as a result of habitat loss and overexploitation. Although there were isolated and sporadic occurrences in PEI coastal and inland waters pre-1975, only anecdotal reports of tracks or sightings of the species had been documented in the 21st century, until an adult male otter was captured in a beaver trap in 2016. Since then, seven additional individuals have been collected opportunistically or as by-catch of beaver trapping, including an adult female and a kit (juvenile). Camera traps have also revealed what appears to be a family group in central PEI. A growing body of evidence strongly suggests a resident River Otter population on PEI. The island is separated from the mainland by the Northumberland Strait, which has a minimum width of 13 km of salt water. River Otters have naturally recolonized PEI by dispersing across the Northumberland Strait.
Forfattere
Kamal Atmeh Christophe Bonenfant Jean-Michel Gaillard Mathieu Garel A. J. Mark Hewison Pascal Marchand Nicolas Morellet Pia Anderwald Bayarbaatar Buuveibaatar Jeffrey L. Beck Matthew S. Becker Floris M. van Beest Jodi Berg Ulrika A. Bergvall Randall B. Boone Mark S. Boyce Simon Chamaillé-Jammes Yannick Chaval Chimeddorj Buyanaa David Christianson Simone Ciuti Steeve D. Côté Duane R. Diefenbach Egil Droge Johan T. du Toit Samantha Dwinnell Julian Fennessy Flurin Filli Daniel Fortin Emma E. Hart Matthew Hayes Mark Hebblewhite Morten Heim Ivar Herfindal Marco Dietmar Heurich Christian von Hoermann Katey Huggler Craig Ryan Jackson Andrew F. Jakes Paul F. Jones Petra Kaczensky Matthew Kauffman Petter Kjellander Tayler LeSharr Leif Egil Loe Roelof Frans May Philip McLoughlin Erling Meisingset Evelyn Merrill Kevin L. Monteith Thomas Mueller Atle Mysterud Dejid Nandintsetseg Kirk Olson John Payne Scott Pearson Åshild Ønvik Pedersen Dustin Ranglack Adele K. Reinking Thomas Rempfler Clifford G. Rice Eivin Røskaft Bernt-Erik Sæther Sonia Saïd Hugo Santacreu Niels Martin Schmidt Daan Smit Jared A. Stabach Martin-Hugues St-Laurent Joëlle Taillon W. David Walter Kevin White Guillaume Péron Anne LoisonSammendrag
Caring for newborn offspring hampers resource acquisition of mammalian females, curbing their ability to meet the high energy expenditure of early lactation. Newborns are particularly vulnerable, and, among the large herbivores, ungulates have evolved a continuum of neonatal antipredator tactics, ranging from immobile hider (such as roe deer fawns or impala calves) to highly mobile follower offspring (such as reindeer calves or chamois kids). How these tactics constrain female movements around parturition is unknown, particularly within the current context of increasing habitat fragmentation and earlier plant phenology caused by global warming. Here, using a comparative analysis across 54 populations of 23 species of large herbivores from 5 ungulate families (Bovidae, Cervidae, Equidae, Antilocapridae and Giraffidae), we show that mothers adjust their movements to variation in resource productivity and heterogeneity according to their offspring’s neonatal tactic. Mothers with hider offspring are unable to exploit environments where the variability of resources occurs at a broad scale, which might alter resource allocation compared with mothers with follower offspring. Our findings reveal that the overlooked neonatal tactic plays a key role for predicting how species are coping with environmental variation.
Forfattere
Gaute Velle Paul Ragnar Berg Johanna Järnegren Martin Malmstrøm Anders Bryn Kjetil Hindar Lawrence R. Kirkendall Kyrre Linné Kausrud Erlend Birkeland Nilsen Brett Kevin Sandercock Eva Bonsak Thorstad Anders NielsenSammendrag
The Norwegian Environment Agency asked VKM to evaluate the risks to biodiversity associated with the importation of eight species of live crabs intended for human consumption. Background Invasive crab species represent a significant threat to biodiversity globally due to their omnivory, adaptability to diverse habitats, high reproductive output, and aggressive behaviour. The Norwegian Environment Agency has raised concerns about the potential ecological risks posed by the import of live crabs to Norway intended for human consumption. This report provides a risk assessment of eight species of crabs that could have negative effects on native biodiversity. The species include Chinese mitten crab (Eriocheir sinensis), Japanese mitten crab (E. japonica), blue crab (Callinectes sapidus), Atlantic rock crab (Cancer irroratus), Asian paddle crab (Charybdis japonica), common moon crab (Matuta victor), African blue swimming crab (Portunus segnis), and Harris mud crab (Rhithropanopeus harrisii). Three of the assessed species were recently confiscated at Norway's border. This suggests a market demand that could increase the frequency of introductions to Norway. Methods VKM established a working group with expertise in invertebrates and risk assessment. The group searched scientific literature for information on the taxonomy, natural history, invasiveness, and ecology for each crab species. If scientific literature was lacking, supplemental google searches allowed for a broader understanding of species with limited research or on the use and transportation of live crabs as food. The assessment utilized the EICAT framework (Environmental Impact Classification for Alien Taxa) to identify potential mechanisms by which each species could harm native biodiversity, should imported specimens become established in Norwegian nature. Key mechanisms include competition, predation, pathogen transmission, and hybridization. The relevant mechanisms were analysed for each species by rating the potential magnitude of impact on biodiversity from minimal to massive. The likelihood of each impact was assessed from very unlikely to very likely. A combination of magnitude of impact and likelihood resulted in final risk levels ranging from low and medium to possibly high and high. Confidence levels for each assessment were also categorized as low, medium, or high based on expert opinion. Results The potential hazards evaluated under the EICAT framework include competition, predation, and transmission of disease for all species, grazing for four species and structural impacts on the ecosystem for three species. The conditions required for crabs imported live for human consumption to reach a natural ecosystem in Norway include a commercial demand for crabs, survival during transport and handling, and the possibility of release or escape. If these conditions for reaching a natural ecosystem are met, the species must then be capable of establishment in the new ecosystem. There are several examples of species imported live for human consumption becoming established in the wild, most likely due to intentional release. The risk assessments indicate varied levels of risk across the five hazards. Competition from E. sinensis or E. japonica was assessed to pose a high risk, while competition from C. sapidus, C. irroratus, M. victor, P. segnis, or R. harrisii was assessed to pose a medium risk. Predation by E. sinensis or E. japonica was assessed to pose a high risk and predation from R. harrisii, C. sapidus, C. irroratus, M. victor, or P. segnis was assessed to pose a medium risk. Transmission of disease from either E. sinensis or E. japonica was assessed to pose a high risk, while there was a possibly high risk of disease transmission from C. irroratus. The diseases of highest concern include the crayfish plague (Aphanomyces astaci) and gaffkaemia (Aerococcus viridans var. homari). Finally, there was a moderate risk of ......
Forfattere
Zhibo Hamborg Ada Konstanse Kristensen Xiaoyan Ma Sissel Haugslien Carl-Henrik Lensjø Alvin Peter van der Ende Øyvor Stensbøl Qiaochun Wang Jana Fránová Dag-Ragnar BlystadSammendrag
Background of the study – Cryopreservation is considered to be a valuable method for long-term preservation of plant germplasm and recently it has been shown to be a reliable method for preserving obligate pathogens including plant viruses. Objectives – (1) Droplet-vitrification cryopreservation of strawberry genotypes in Norway; (2) Preservation efficiency of aphid-transmitted strawberry mild yellow edge virus (SMYEV) and strawberry vein banding virus (SVBV) following cryopreservation. Methods – Excised shoot tips of cv. ‘Korona’ were cryopreserved with different durations of PVS2 varying from 10 to 60 min, whereas virus-infected shoot tips were cryopreserved using either 10, 40 or 60 min of PVS2. Results – The results showed that 40–60 minutes of PVS2 treatment was more efficient for preserving strawberry germplasm than lower duration times (10–30 min). Thirty-two strawberry genotypes have been successfully cryopreserved through droplet-vitrification with regeneration rates ranging from 45% to 100% with 40 min PVS2 treatment. Cryopreserved viruses were quantitatively analyzed by Reverse Transcription-quantitative polymerase chain reaction (RT-qPCR). SVBV was successfully cryopreserved in all the regenerated shoots following cryopreservation with all the three durations of PVS2 examined. SMYEV, however, was more efficiently preserved in shoot tips exposed to 40 min (90%) of PVS2, in comparison to 60 min (33%). Conclusion – This demonstrates that SMYEV and SVBV can be successfully cryopreserved in living cells of Fragaria ssp. by droplet vitrification. The results indicate that cryopreservation has great potential for long-time preservation of both strawberry germplasm and aphid-transmitted strawberry-infecting viruses.
Forfattere
Ahmed Seid Ahmed Anagaw Meshesha Atickem Afework Bekele Diress Tsegaye Alemu Nils Christian Stenseth David J. Zinner Christian Roos Dietmar ZinnerSammendrag
The diversity of bats in Ethiopia comprises at least 80 species, among them the Ethiopian long-eared bat that was described in 2000. It is most likely endemic to the highlands of Ethiopia. However, knowledge of the distribution of the species is limited. During a bat survey in 12 regions of central Ethiopia stretched over 700 km along the Ethiopian Rift, we trapped long-eared bats at sites in three regions and confirmed the species' identity by molecular analysis. All occurrence sites of P. balensis were above 2500 m, confirming this taxon as a high-altitude species. Two of the regions are additions to the known range of P. balensis but it is most likely present in more high-altitude areas of Ethiopia than currently known. Additional surveys in so far unsampled areas are therefore indicated.
Forfattere
Carl Gunnar Fossdal Paal Krokene Jorunn Elisabeth Olsen George Richard Strimbeck Marcos Viejo Igor A. Yakovlev Melissa MagerøySammendrag
Gymnosperms are long-lived, cone-bearing seed plants that include some of the most ancient extant plant species. These relict land plants have evolved to survive in habitats marked by chronic or episodic stress. Their ability to thrive in these environments is partly due to their phenotypic flexibility, and epigenetic regulation likely plays a crucial part in this plasticity. We review the current knowledge on abiotic and biotic stress memory in gymnosperms and the possible epigenetic mechanisms underlying long-term phenotypic adaptations. We also discuss recent technological improvements and new experimental possibilities that likely will advance our understanding of epigenetic regulation in these ancient and hard-to-study plants.
Sammendrag
Tip rot of carrot significantly reduces root quality and contributes to the high-level rejection during sorting and packaging in Norway. The rot can be dry, or wet, and vary in colour from light brown to dark brown. Diagnosis of a plant disease involves close examination of the symptoms, detection and identification of the causal agent(s), and confirmation of pathogenicity. The objective of this study was to identify the causal agent(s) of tip rot in carrot. Fungi and bacteria were isolated from multiple carrots with tip rot symptoms and used for inoculation of healthy carrots to determine pathogenicity and also for DNA extraction, sequencing of commonly used genes for identification and barcoding genes and DNA metabarcoding. For isolation and inoculation, we developed a method allowing individual carrots to remain upright without touching each other within an incubation box. For morphological identification of causal agents, we found that a combination of methods such as isolation on potato carrot agar, disinfection of infected tissue followed by moist incubation, and inoculation followed by incubation at room temperature for 24 h, and then at 0-6°C were optimal methods for the identification of tip rot pathogens of carrot. Based on the combination of molecular and morphological identification methods, we found that tip rot of carrots is a disease complex caused by several fungi but principally Mycocentrospora acerina and Cylindrocarpon destructans. Diagnosis of postharvest diseases is often a complex problem, and this research demonstrates that a combination of methods is a useful approach. Furthermore, the study indicated that the common approach of trying to associate a disease with a single causal agent does not work for all postharvest diseases. The possibility of multiple causal agents and predisposing factors must be considered, and we should be cautious not to jump to a hasty decision.
Sammendrag
The effect of climate change on mountain vegetation is influenced by environmental factors and site effects. To monitor the effect of climate change we therefore need to understand species' sensitivity to microclimate and environmental gradients. The objective of this study is to study widespread plant species' temporal and spatial variation along environmental and microclimate gradients in Norwegian mountains along a coast–inland gradient. Occurrence and abundance of plant species were surveyed in 110 study plots in four mountains at two points in time, seven years apart. Of the 222 plant species registered, Salix herbacea, Phyllodoce caerulea, Carex bigelowii, Juncus trifidus, Vaccinium myrtillus, Avenella flexuosa, and Empetrum nigrum were widespread across all mountains. These species responded differently to environmental and microclimate gradients, and abundance data were more sensitive than occurrence data. During the short time span we observed some indications of response which might support the assumption that boreal species outcompete alpine species in the forest transition zone, but our data do not indicate this effect at higher altitudes. Monitoring of climate change in mountains needs to include plots along environmental and microclimate gradients as well as an abundance of a set of widespread plant species that represent regional, local environmental, and climate gradients. However, when monitoring perennial plant species, the need for long-term monitoring projects is high because such species develop slowly over several decades.
Forfattere
Jian Liu Faruk Djodjic Barbro Ulén Helena Aronsson Marianne Bechmann Lars Bergström Tore Krogstad Katarina KyllmarSammendrag
Nordic agriculture faces big challenges to reduce phosphorus (P) loss from land to water for improving surface water quality. While understanding the processes controlling P loss and seeking for P mitigation measures, Norwegian and Swedish researchers have substantially benefited from and been inspired by Dr. Andrew Sharpley’s career-long, high-standard P research. Here, we demonstrate how Sharpley and his research have helped theNordic researchers to understand the role of cover crops in cold environmental conditions, best manure P management practices, and ditch processes. His work on critical source area (CSA) identification and site assessment tool development have also greatly inspired our thinking on the targeting of mitigation measures and the contextualizing tools for Nordic climate, landscape, and soils.While reflecting on Sharpley’s legacy, we identify several needs for Norwegian and Swedish P research and management. These include (1) tackling the challenges caused by local/regional unevenness in livestock density and related manure management and farm P surpluses, (2) identifying CSAs of P loss with high erosion risk and high P surplus, (3) obtaining more high-resolution mapping of soils with low P sorption capacity both in the topsoil and subsoil, (4) improving cross-scale understanding of processes and mitigation measures and proper follow-up of applied mitigation measures, and (5) increasing collaborations of researchers with farmers and farmers’ advisory groups and watershed groups by developing high-quality educational courses and extension materials. The needs should be addressed in the context of the challenges and opportunities created by climate change.
Forfattere
Freya Maria Rosemarie Ziegler Vivien Rosenthal Jose G. Vallarino Franziska Genzel Sarah Spettmann Łukasz Seliga Sylwia Keller-Przybyłkowicz Lucas Munnes Anita Sønsteby Sonia Osorio Björn UsadelSammendrag
Blackcurrant (Ribes nigrum L., family Grossulariaceae) is a perennial shrub that is widely cultivated for its edible berries. These are rich in antioxidants, vitamin C and anthocyanins, making them a valuable ingredient in the food and beverage industry. However, prolonged periods of drought during the fruiting season lead to drought stress, which has serious ecological and agricultural implications, inhibiting blackcurrant growth and reducing yields. To facilitate the analysis of underlying molecular processes, we present the first high-quality chromosome-scale and partially haplotype-resolved assembly of the blackcurrant genome (cv. Rosenthals Langtraubige), also the first in the family Grossulariaceae. We used this genomic reference to analyze the transcriptomic response of blackcurrant leaves and roots to drought stress, revealing differentially expressed genes with diverse functions, including those encoding the transcription factors bZIP, bHLH, MYB and WRKY, and tyrosine kinase-like kinases such as PERK and DUF26. Gene expression was correlated with the abundance of primary metabolites, revealing 14 with significant differences between stressed leaves and controls indicating a metabolic response to drought stress. Amino acids such as proline were more abundant under stress conditions, whereas organic acids were depleted. The genomic and transcriptomic data from this study can be used to develop more robust blackcurrant cultivars that thrive under drought stress conditions.
Forfattere
Andrea Ponzecchi Gry Alfredsen Maria Fredriksson Emil Engelund Thybring Lisbeth G. ThygesenSammendrag
Acetylation is a commercialised chemical wood modification technology that increases the durability of wood against microbial attack. However, the details of how acetylation protects the wood structure from fungal degradation are still unclear. In this study, we tested the hypothesis that the resistance against microbial attack depends on the localisation of acetylation within the cell wall. The methodology involved two types of acetylation (uniform and lumen interface modification), which were analysed by lab-scale degradation with Rhodonia placenta, chitin quantification, infrared spectroscopy, and Raman microspectroscopy. The location of the acetylation did not affect overall mass loss during degradation experiments. Instead, the mass loss was related to the intensity of the treatment. However, chemical imaging of the interface acetylated specimens showed that degradation primarily took place in cell wall regions that were less acetylated. It was also observed that the fungus required more fungal biomass (i.e., fungal mycelia) to degrade acetylated wood than untreated wood. Based on dimensions and comparison to a reference spectrum, several cross-sections of hyphae located within lumina were discovered in the Raman images. These hyphae showed presence of chitin, water and chelated metals within their walls, and could be separated into an inner and an outer part based on their chemistry as seen in the spectra. The outer part was distinguished by a relatively higher amount of water and less chelated iron than the inner part.
Sammendrag
Aim Effective management of non-indigenous species requires knowledge of their dispersal factors and founder events. We aim to identify the main environmental drivers favouring dispersal events along the invasion gradient and to characterize the spatial patterns of genetic diversity in feral populations of the non-native pink salmon within its epicentre of invasion in Norway. Location Mainland Norway and North Atlantic Basin. Methods We first conducted SDM using four modelling techniques with varying levels of complexity, which encompassed both regression-based and tree-based machine-learning algorithms, using climatic data from the present to 2050. Then, we used the triple-enzyme restriction-site associated DNA sequencing (3RADseq) approach to genotype over 30,000 high-quality single-nucleotide polymorphisms to elucidate the patterns of genetic diversity and gene flow within the pink salmon putative invasion hotspot. Results We discovered temperature- and precipitation-related variables drove pink salmon distributional shifts across its non-native ranges and that climate-induced favourable areas will remain stable for the next 30 years. In addition, all SDMs identified north-eastern Norway as the epicentre of the pink salmon invasion, and genomic data revealed that there was minimal variation in genetic diversity across the sampled populations at a genome-wide level in this region. While utilizing a specific group of ‘diagnostic’ SNPs, we observed a significant degree of genetic differentiation, ranging from moderate to substantial, and detected four hierarchical genetic clusters concordant with geography. Main Conclusions Our findings suggest that fluctuations in climate extreme events associated with ongoing climate change will likely maintain environmental favourability for the pink salmon outside its ‘native’/introduced ranges. Locally invaded rivers are themselves potential source populations of invaders in the ongoing secondary spread of pink salmon in Northern Norway. Our study shows that SDMs and genomic data can reveal species distribution determinants and provide indicators to aid in post-control measures and potentially inferences about their success.
Sammendrag
Background The order Lepidoptera has an abundance of species, including both agriculturally beneficial and detrimental insects. Molecular data has been used to investigate the phylogenetic relationships of major subdivisions in Lepidoptera, which has enhanced our understanding of the evolutionary relationships at the family and superfamily levels. However, the phylogenetic placement of many superfamilies and/or families in this order is still unknown. In this study, we determine the systematic status of the family Argyresthiidae within Lepidoptera and explore its phylogenetic affinities and implications for the evolution of the order. We describe the first mitochondrial (mt) genome from a member of Argyresthiidae, the apple fruit moth Argyresthia conjugella. The insect is an important pest on apples in Fennoscandia, as it switches hosts when the main host fails to produce crops. Results The mt genome of A. conjugella contains 16,044 bp and encodes all 37 genes commonly found in insect mt genomes, including 13 protein-coding genes (PCGs), two ribosomal RNAs, 22 transfer RNAs, and a large control region (1101 bp). The nucleotide composition was extremely AT-rich (82%). All detected PCGs (13) began with an ATN codon and terminated with a TAA stop codon, except the start codon in cox1 is ATT. All 22 tRNAs had cloverleaf secondary structures, except trnS1, where one of the dihydrouridine (DHU) arms is missing, reflecting potential differences in gene expression. When compared to the mt genomes of 507 other Lepidoptera representing 18 superfamilies and 42 families, phylogenomic analyses found that A. conjugella had the closest relationship with the Plutellidae family (Yponomeutoidea-super family). We also detected a sister relationship between Yponomeutoidea and the superfamily Tineidae. Conclusions Our results underline the potential importance of mt genomes in comparative genomic analyses of Lepidoptera species and provide valuable evolutionary insight across the tree of Lepidoptera species. Keywords Argyresthia conjugella, Illumina HiSeq, Lepidoptera, Mitochondrial genome, Yponomeutoidea
Sammendrag
Semi-natural hay meadows are among the most species-rich habitats in Norway as well as in Europe. To maintain the biodiversity of hay meadows, it is important to understand local management regimes and the land use history that has shaped them and their biodiversity. There is however a general erosion of Traditional Ecological Knowledge (TEK), related to hay meadows and other semi-natural habitats. This review aims to examine historical and written sources of land use practices related to hay meadows and to discuss the implications of a re-introduction of TEK in present and future management practices. Traditional land use practices and TEK obtained from written sources from four Norwegian regions and for the country as a whole are compared with present management practices. Written sources show that hay meadows have been managed in a complex but flexible way. Today's management regimes of hay meadows in Norway are streamlined and strongly simplified, most often involving only one late mowing and in some cases grazing. This simplification may result in loss of biodiversity. The potential to include more variety of management practices in hay meadows, by utilizing knowledge from written sources more systematically in combination with farmers’ experienced knowledge (TEK) should be better utilized. Such an approach may secure both the biodiversity in hay meadows and TEK for the future. Former and present landscape ecological contexts in the infield-outlying land system show that management should be done for larger landscapes rather than small, isolated hay meadows, to optimize biodiversity conservation. For this study, we conducted a Norwegian literature review, based on ethnographical and ethnobotanical sources, as well as historical and present agricultural statistics, historical maps, results from research projects, and other sources. Our findings are discussed with similar European studies focusing on the historical management of hay meadows.
Sammendrag
Background: Small-scale forests (woodlots) increasingly account for a greater proportion of the total annual harvest in New Zealand. There is limited information on the extent of infrastructure required to harvest a woodlot; road density (trafficable with log trucks), landing size, or the average harvest area that each landing typically services. Methods: This study quantified woodlot infrastructure averages and evaluated influencing factors. Using publicly available aerial imagery, roads and landings were mapped for a sample of 96 woodlots distributed across the country. Factors such as total harvest area, average terrain slope, length/width ratio, boundary complexity and extraction method were recorded and investigated for correlations. Results: The average road density was 25 m/ha, landing size was 3000 m2 and each landing was serviced on average 12.8 ha. Notably, 15 of the 96 woodlots had no internal infrastructure, with the harvest completed using roads and landings located outside of the woodlot boundary. Factors influencing road density were woodlot length/width ratio, average terrain slope and boundary complexity. Landing size was influenced by average terrain slope, woodlot length/width ratio, and woodlot area. Conclusion: The results provide a contemporary benchmark of the current infrastructure requirements when harvesting a small-scale forests in New Zealand. These may be used at a high level to infer the total annual infrastructure investment in New Zealand's woodlot estate and also project infrastructure requirements over the foreseeable future. Keywords: forest infrastucture, small-scale forestry
Sammendrag
Heat treatment increases the decay resistance of wood by decreasing its hygroscopicity, but the wood material remains degradable by fungi. This study investigated the degradation of heat-treated wood by brown rot fungi, with the aim of identifying fungal-induced hygroscopicity changes that facilitate degradation. Scots pine sapwood samples were modified under superheated steam at 200 and 230 °C and then exposed to Coniophora puteana and Rhodonia placenta in a stacked-sample decay test to produce samples in different stages of decay. Sorption isotherms were measured starting in desorption from the undried, decaying state to investigate their hygroscopic properties. Although there were substantial differences in degradative ability between the two fungi, the results revealed that decay by both species increased the hygroscopicity of wood in the decaying state, particularly at high relative humidity. The effect was stronger in the heat-treated samples, which showed a steep increase in moisture content at low decay mass losses. The reference samples showed decreased hygroscopicity in absorption from the dry state, while the heat-treated samples still showed an increase at low mass losses. Near infrared spectroscopy showed that the early stages of decay were characterised by the degradation of hemicellulose and chemical changes to cellulose and lignin, which may explain the increase in hygroscopicity. The results provide a new perspective on brown rot decay and offer insight into the degradation of heat-treated wood.
Forfattere
Pablo Moreno-García Flavia Montaño-Centellas Yu Liu Evelin Y. Reyes-Mendez Rohit Raj Jha Robert P. Guralnick Ryan Folk Donald M. Waller Kris Verheyen Lander Baeten Antoine Becker-Scarpitta Imre Berki Markus Bernhardt-Römermann Jörg Brunet Hans Van Calster Markéta Chudomelová Deborah Closset Pieter De Frenne Guillaume Decocq Frank S. Gilliam John-Arvid Grytnes Radim Hédl Thilo Heinken Bogdan Jaroszewicz Martin Kopecký Jonathan Lenoir Martin Macek František Máliš Tobias Naaf Anna Orczewska Petr Petřík Kamila Reczyńska Fride Høistad Schei Wolfgang Schmidt Alina Stachurska-Swakoń Tibor Standovár Krzysztof Świerkosz Balázs Teleki Ondřej Vild Daijiang LiSammendrag
Biological nitrogen fixation is a fundamental part of ecosystem functioning. Anthropogenic nitrogen deposition and climate change may, however, limit the competitive advantage of nitrogen-fixing plants, leading to reduced relative diversity of nitrogen-fixing plants. Yet, assessments of changes of nitrogen-fixing plant long-term community diversity are rare. Here, we examine temporal trends in the diversity of nitrogen-fixing plants and their relationships with anthropogenic nitrogen deposition while accounting for changes in temperature and aridity. We used forest-floor vegetation resurveys of temperate forests in Europe and the United States spanning multiple decades. Nitrogen-fixer richness declined as nitrogen deposition increased over time but did not respond to changes in climate. Phylogenetic diversity also declined, as distinct lineages of N-fixers were lost between surveys, but the “winners” and “losers” among nitrogen-fixing lineages varied among study sites, suggesting that losses are context dependent. Anthropogenic nitrogen deposition reduces nitrogen-fixing plant diversity in ways that may strongly affect natural nitrogen fixation.
Forfattere
Kari-Anne Kallerud Lyng Hanne Møller Klaus Mittenzwei Ivar Pettersen Jakob Vesterlund Olsen Hanne Fjerdingby OlsenSammendrag
The food system significantly impacts the environment and society. This study examined a shift from a continuation of the current trend (policy as usual scenario) towards a biomass value hierarchy scenario, which focused on optimizing land and biomass use and rethinking the role of livestock production. The biomass value hierarchy was based on circular economy principles, the waste hierarchy, and national self-sufficiency, which eliminated feed import and redistributed protein sources in the diet. A Multi-Criteria Decisions Analysis (MCDA) framework was used to assess the two scenarios across four sustainability dimensions: environmental, social, economic and policy. Environmental and social impacts were analysed using life cycle assessment methodology, while economic and policy implications were explored using partial equilibrium modelling, with the Norwegian food system as a case study. The results for the environmental dimension indicated that, compared to the policy as usual scenario, the biomass value hierarchy reduced environmental impacts by 8% to 18% across the indicators, including climate change, acidification, particulate matter, terrestrial eutrophication and occupation of arable land. Social impacts also improved in categories with the highest social risks, such as equal opportunities for workers, health and safety for farmers, cultural heritage, food security, fair competition, and promoting social responsibility. Contrarily, indicators within the economic dimension revealed reduced profitability, and results within the policy dimension showed a considerable increase in required subsidies, border measures and governmental restrictions on consumption. The study findings indicate that an environmentally and socially sustainable food system is feasible but requires significant political and economic support. Additionally, the study highlights the value of using MCDA when combining different research methods in cross-disciplinary assessments. These results underscore the need for a societal debate on acceptable levels of political intervention and the role of consumers and taxpayers in shaping the future food system.
Sammendrag
Ultraviolet (UV) irradiation below 300 nm may control powdery mildew in numerous crops. Depending on disease pressure, wavelength, and crop growth stage, one to three applications of 100–200 J/m2 per week at night are as effective or better than the best fungicides. Higher doses may harm the plants and reduce yields. Although red light alone or in combination with UV has a suppressive effect on powdery mildew, concomitant or subsequent exposure to blue light or UV-A strongly reduces the efficacy of UV treatments. To be effective, direct exposure of the pathogen/infection sites to UV/red light is important, but there are clear indications for the involvement of induced resistance in the host. Other pathogens and pests are susceptible to UV, but the effective dose may be phytotoxic. Although there are certain limitations, this technology is gradually becoming more used in both protected and open-field commercial production systems.
Forfattere
Markus A. K. Sydenham Yoko L. Dupont Anders Nielsen Jens M. Olesen Henning Bang Madsen Astrid Brekke Skrindo Claus Rasmussen Megan Sara Nowell Zander Venter Stein Joar Hegland Anders Gunnar Helle Daniel Ingvar Jeuderan Skoog Marianne Strand Torvanger Kaj-Andreas Hanevik Sven Emil Hinderaker Thorstein Paulsen Katrine Eldegard Trond Reitan Graciela Monica RuschSammendrag
Climate change, landscape homogenization, and the decline of beneficial insects threaten pollination services to wild plants and crops. Understanding how pollination potential (i.e. the capacity of ecosystems to support pollination of plants) is affected by climate change and landscape homogenization is fundamental for our ability to predict how such anthropogenic stressors affect plant biodiversity. Models of pollinator potential are improved when based on pairwise plant–pollinator interactions and pollinator's plant preferences. However, whether the sum of predicted pairwise interactions with a plant within a habitat (a proxy for pollination potential) relates to pollen deposition on flowering plants has not yet been investigated. We sampled plant–bee interactions in 68 Scandinavian plant communities in landscapes of varying land-cover heterogeneity along a latitudinal temperature gradient of 4–8°C, and estimated pollen deposition as the number of pollen grains on flowers of the bee-pollinated plants Lotus corniculatus and Vicia cracca. We show that plant–bee interactions, and the pollination potential for these bee-pollinated plants increase with landscape diversity, annual mean temperature, and plant abundance, and decrease with distances to sand-dominated soils. Furthermore, the pollen deposition in flowers increased with the predicted pollination potential, which was driven by landscape diversity and plant abundance. Our study illustrates that the pollination potential, and thus pollen deposition, for wild plants can be mapped based on spatial models of plant–bee interactions that incorporate pollinator-specific plant preferences. Maps of pollination potential can be used to guide conservation and restoration planning.
Forfattere
Paal Krokene Beatrix Alsanius Jorunn Børve Daniel Flø Bjørn Arild Hatteland Erik J. Joner Lawrence Richard Kirkendall Christer Magnusson Mogens Nicolaisen Line Nybakken Johan Stenberg Selamawit Tekle Gobena Kristine Bakke Westergaard Sandra A. I. WrightSammendrag
Background: The Norwegian Environment Agency (Miljødirektoratet) and the Norwegian Food Safety Authority (Mattilsynet) tasked the Norwegian Scientific Committee for Food and Environment (Vitenskapskomiteen for mat og miljø, VKM) to provide a scientific opinion identifying which growing media associated with import of live plants pose the greatest risk of introducing non-native species to Norway. VKM was also asked to assess how effective various risk-reducing measures are to prevent such introductions. In this report, we focus on the introduction of plant pests. Trade in plants for planting is a large and complex international business where live plants are grown in some areas and shipped to other areas where they are intended to be planted or replanted. Traded plants are usually shipped with associated growing media. Long-lived plants, like trees and bushes, may be imported to the EU (e.g., from Asia) and traded through different countries for several years of on-growth before being shipped to Norway. Long production cycles, partly in outdoor nurseries, suggest that the import of live plants with soil or other growing media into Norway comes with a high probability of introducing plant pests. Such pests could cause severe harm to Norwegian plant health and impact both agriculture and natural ecosystems. In this scientific opinion, we describe the most used growing media and assess the risks associated with these. We further evaluate what types of plants and which exporting countries are considered to pose the highest risks for introducing plant pests. Finally, we describe different risk reduction options and assess the effectiveness of current Norwegian regulations as a tool to reduce risks. Altogether, this assessment provides a comprehensive overview of the potential risks involved in importing soil and other growing media associated with plants for planting and of possible strategies for mitigating these risks. Key findings: Growing media constituents: The most used organic growing media constituents are peat, wood fiber, and compost, but a great array of other constituents is also used. In this report, we have focused on organic constituents, as these are frequently colonized by living organisms when sourced and may support pest species by acting as a food source or as a sheltering environment that provides water, oxygen, and other crucial factors for pest survival. Growing media as a plant pest carrier: Even though most growing media constituents initially are sterile or free from any plant pests, the processes of mixing, potting, plant cultivation, transport, and storage can easily allow contamination by and propagation of pests underway from a primary source to a customer in Norway. Many organisms can colonize and survive in growing media under conditions primarily designed to keep plants alive. Growing media thus poses a risk of introducing plant pests to Norway when such media are imported together with live plants. Identified pest species: Organisms that can arrive with the import of live plants and associated growing media will include organisms that are not plant pests, known plant pests, regulated pests, and species that may be problematic even though they are not currently listed as quarantine pests. By screening two international databases (CABI, 2022; EPPO, 2024b) and performing a structured literature search, we identified a total of 651 pest species, most of which are not present in Norway, that may be associated with plants imported from Europe with soil or other growing media (154 species from CABI, 87 from EPPO, and 410 from the literature search). Due to time limitations, only 89 species were assessed for their association with soil and growing media. This evaluation included 20 species from CABI, 24 from EPPO, and 45 from the literature search, as detailed in Appendix 5. Climate suitability analyses were carried out .........
Sammendrag
Heathlands are extensive systems often dominated by slow-growing and long-lived woody plants. These systems require longer-term studies to capture if and how they are changing over time. In 2020, we resurveyed species richness and cover of vascular plant communities in 139 heathlands along the coastline of northern Fennoscandia, first surveyed during 1965–1975. The first survey included six heathland types, each with dominance – a cover of 25% or more – of the dwarf shrubs Calluna vulgaris, Kalmia procumbens, Betula nana, Vaccinium myrtillus and Empetrum nigrum. The two latter heathland types made up 29% and 48%, respectively, of all heathlands. In addition to the dominant dwarf shrubs giving their names to the heathland types, a few other species qualified as dominant. In the resurvey, all the heathland types had E. nigrum as the single dominant species, except for the heathland formerly dominated by B. nana. Most other species had low cover both at the time of the original survey and the resurvey. Also, the heathland types were species poor at the time of the original survey, with an average of eight vascular plant species per 4 m2 and were found equally species poor in the resurvey. Species richness differed between heathland types only at the time of the original survey, and the ratio of species exchange between the two surveys was negatively related to the original cover of E. nigrum. Here we provide a half-century perspective on vegetation change, during which several heathland types in northern Fennoscandia have changed to Empetrum heathlands, reducing the diversity of heathland types across the Boreal to Arctic landscape. As a native plant, E. nigrum cannot be considered invasive, but its allelopathic capacity has likely already modified these heathland ecosystems and will continue to do so, reducing ecosystem multifunctionality across the region.
Sammendrag
Increasing levels of global environmental change may have negative impacts on fertility and embryo viability in animals that could explain a recently reported increase in hatching failure in bird eggs across the globe. Here we test this relationship again by analyzing a dataset containing almost twice as many species and covering a longer time period than earlier works (n = 431 species during the period 1906–2022). We also tested for effects of Red List status and global population size. We found that hatching failure rates in a combined group of bird species currently classified as threatened (IUCN Red List categories Critically Endangered, Endangered and Vulnerable) or Near Threatened, peaked in the late 1970s to early 1980s and thereafter declined. A similar trend also existed in species with relatively small global populations. In contrast, no temporal trends were found in species in the Least Concern category, or in species with large global populations. Moreover, hatching failure rates declined significantly with increasing global population sizes. The temporal peak of hatching failure rates in threatened and Near Threatened species corresponds with the peak in environmental levels of the insecticide DDT. While this could suggest that environmental pollution caused the temporal trends in hatching failure rates, effects of inbreeding in small and threatened populations sampled more frequently during this period could not be excluded. Although we found no evidence suggesting that the rates of hatching failure in bird eggs are increasing, the current study supports previous works showing that species of high conservation concern appear to be more susceptible to factors leading to reproductive failure than other species.
Sammendrag
This study investigated the variation in health- and sensory-related phytochemicals and agronomic characteristics of 26 head cabbage cultivars grown in randomized block field trials under commercial cultivation conditions in three different harvest seasons. The main goal was to provide increased knowledge on the nutritional quality of current and potential new cabbage cultivars to allow for a substantiated choice of cultivars for growers, industry, and consumers. Providing a wide diversity, all cultivars performed well with regard to agronomic characteristics that determine market quality and revenue. Sugar content, an important parameter for consumer acceptance, was surprisingly similar in all cultivars, although higher and more variable in the winter cultivars. Red cabbages were among the highest in vitamin C, total phenolics, and glucosinolate content, especially in the coveted glucoraphanin, the precursor to sulforaphane. Savoy cabbage was highest in glucosinolate content and high in vitamin C but more like white cabbages in all other phytochemical parameters. Among the 20 white cultivars across all three seasons, there were small but significant differences in phytochemical content. Thus, the potential for product differentiation among this selection of cabbages was high.
Forfattere
Marian Malte Weigel Therese With Berge Jukka Salonen Timo Lötjönen Bärbel Gerowitt Lars Olav BrandsæterSammendrag
Controlling creeping perennial weeds is challenging throughout all farming systems. The present study distinguished and explored three different methods to control them non-chemically: disturbance with inversion, disturbance without inversion, and competition. Focusing on Cirsium arvense, Elymus repens, and Sonchus arvensis, we conducted a field study (2019–2021) at three northern European sites in Germany, Finland, and Norway. We investigated the effects of the control methods ploughing (inversion disturbance), root cutting (non-inversion disturbance), and cover crops (competition) alone. Root cutting was conducted using a prototype machine developed by “Kverneland”. Eight treatments were tested in factorial designs adapted for each site. Control methods were applied solely and combined. Response variables after treatments were aboveground weed biomass and grain yield of spring cereals. The control method of ploughing was most effective in reducing weed biomass compared to root cutting or cover crops. However, compared to the untreated control, a pronounced additive effect of root cutting and cover crops occurred, reducing weed biomass (−57.5%) similar to ploughing (−66%). Pooled over sites, the response was species-specific, with each species showing a distinct reaction to both control methods. C. arvense was most susceptible to root cutting, followed by E. repens, while S. arvensis showed no susceptibility. Crop yield losses were prevented compared to untreated plots by ploughing (+60.57%) and root cutting (+30%), but not by cover crops. We conclude that the combination of non-inversion disturbance and competition is a promising strategy to reduce the reliance on herbicides or inversion tillage in the management of perennial weeds.
Forfattere
Anders Nielsen Bjørn Arild Hatteland Jo Skeie Hermansen Lawrence Richard Kirkendall Claus Rasmussen Kristin Opdal Seljetun Markus A. K. Sydenham Henning Sørum Paul Ragnar Berg Anders Bryn Kjetil Hindar Kyrre Kausrud Tor Atle Mo Erlend Birkeland Nilsen Brett Kevin Sandercock Eva Bonsak Thorstad Gaute VelleSammendrag
Background Pollinators are under threat from a variety of environmental drivers, including habitat loss and fragmentation, pesticides, climate change, and invasive species. Despite being domesticated animals, honey bees (Apis mellifera) share many traits with invasive species and several studies have suggested that beekeeping might pose a threat to wild bees and other pollinators. In Norway, the history of beekeeping dates to at least the 18th century, yet little is known about the consequences of this agricultural practice on biodiversity, especially on wild pollinators. The Norwegian Environment Agency therefore asked VKM to provide a brief summary of the available literature on the impact of honey bee keeping on wild pollinating insects and assess whether keeping of honey bees might pose a risk to wild pollinators in Norway. VKM was also asked to specifically assess the impact of stocking rates and placement of honey bee hives in relation to important wild pollinator habitats and vulnerable populations of wild pollinators (e.g. threatened species). Finally, VKM was asked to identify and assess possible risk-reducing measures related to any risk identified. Methods To provide a brief review of the literature on how keeping of honey bees affect wild pollinators, VKM conducted a rapid review, using the "updates of systematic reviews" approach. This approach aimed to update and supplement the two existing systematic reviews on the topic. Following established search protocols, the literature review thus focused on the effects of managed honey bees (Apis mellifera) on wild pollinators, specifically addressing three key areas: (i) competition for floral and nesting resources, (ii) transmission of pathogens and parasites, and (iii) indirect effects via changes in plant communities. Based on the hazards identified in the literature review and one additional hazard identified by experts in the project group, VKM conducted a risk assessment that included hazard identification, hazard characterization, likelihood of impact, and risk characterization for each of the hazards identified, focusing on the Norwegian context. Additionally, for each identified hazard, VKM estimated the confidence levels for each step in the risk assessment. Finally, VKM identified potential risk mitigating measures and assessed their effectiveness. This was done by conducting a literature search to identify potential risk reducing measures and assessing the identified mitigating measures their effectiveness, certainty of effectiveness, and potential harms using the approach developed by Conservation Evidence (see www.conservationevidence.com). Results/Conclusions Status of knowledge The literature review performed by VKM identified 45 recent studies that were not included in the two previous systematic reviews on the topic. The new studies did not provide results that altered the conclusions of the previous reviews. A brief summary of the review is presented below. Competition for floral resources. Managed honey bees can compete with wild pollinators for shared floral resources and this competition can have clear, measurable, negative effects on wild pollinators. Spillover of pathogens and parasites. Managed honey bees can potentially spread bacterial, viral, and fungal pathogens to wild pollinators. The extent to which these pathogens cause disease in wild pollinators is, however, unknown for most wild pollinators. Several parasitic mites can infest hives of managed honey bees, but none of these have been shown to infest wild pollinators found in Norway. One common honey bee pest, the small hive beetle (Aethina tumida), has been found to also infect nests of wild bees. This species is not currently found in Norway. ............................
Forfattere
Getachew Birhanu Abera Erik Trømborg Linn Solli Juline M Walter Radziah Wahid Espen Govasmark Svein Jarle Horn Nabin Aryal Lu FengSammendrag
Biofilm is a syntrophic community of microorganisms enveloped by extracellular polymeric substances and displays remarkable adaptability to dynamic environments. Implementing biofilm in anaerobic digestion has been widely investigated and applied as it promotes microbial retention time and enhances the efficiency. Previous studies on anaerobic biofilm primarily focused on application in wastewater treatment, while its role has been significantly extended to accelerate the degradation of lignocellulosic biomass, improve gas–liquid mass transfer for biogas upgrading, or enhance resistance to inhibitors or toxic pollutants. This work comprehensively reviewed the current applications of biofilm in anaerobic digestion and focused on impacting factors, optimization strategies, reactor set-up, and microbial communities. Moreover, a full-scale biofilm reactor case from Norway is also reported. This review provides a state of-the- art insight on the role of biofilm in anaerobic digestion.
Sammendrag
The biological durability of ten wood species was determined on the basis of results from laboratory agar block tests. The experiment utilised two specimen formats: standard EN 113-2 specimens (15 × 25 × 50 mm) and mini-blocks (5 × 10 × 30 mm) exposed to two fungi (Coniophora puteana and Trametes versicolor) for varying incubation periods. Mini-block tests yield dissimilar outcomes compared to the European standard test at six, eight, ten or 16 weeks of incubation. This discrepancy extended to both durability classifications based on median percentage mass loss and those based on relative mass loss (x-values). It was therefore concluded that laboratory tests with miniaturised specimens are not advisable as a substitute for conventional durability classification assessments.
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Forfattere
Xueqi Li Sujie Zhang Chenyang Wang Bin Ren Fang Yan Shaofang Li Carl Jonas Jorge Spetz Jinguang Huang Xueping Zhou Huanbin ZhouSammendrag
In situ epitope tagging is crucial for probing gene expression, protein localization, and the dynamics of protein interactions within their natural cellular context. However, the practical application of this technique in plants presents considerable hurdles. Here, we comprehensively explored the potential of the CRISPR/Cas nuclease-mediated prime editing and different DNA repair pathways in epitope tagging of endogenous rice (Oryza sativa) genes. We found that a SpCas9 nuclease/microhomology-mediated end joining (MMEJ)-based prime editing (PE) strategy (termed NM-PE) facilitates more straightforward and efficient gene tagging compared to the conventional and other derivative PE methods. Furthermore, the PAM-flexible SpRY and ScCas9 nucleases-based prime editors have been engineered and implemented for the tagging of endogenous genes with diverse epitopes, significantly broadening the applicability of NM-PE in rice. Moreover, NM-PE has been successfully adopted in simultaneous tagging of the MAP kinase (MPK) genes OsMPK1 and OsMPK13 in rice plants with c-Myc and HA tags, respectively. Taken together, our results indicate great potential of the NM-PE toolkit in the targeted gene tagging for Rice Protein Tagging Project, gene function study and genetic improvement.
Forfattere
Erico Kutchartt José Ramón González-Olabarria Antoni Trasobares Núria Aquilué Juan Guerra-Hernández Leónia Nunes Ana Catarina Sequeira Brigite Botequim Marius Hauglin Palaiologos Palaiologou Adrian Cardil Martino Rogai Vassil Vassilev Francois Pimont Olivier Martin-Ducup Francesco PirottiSammendrag
Canopy base height (CBH) and canopy bulk density (CBD) are forest canopy fuel parameters that are key for modeling the behavior of crown wildfires. In this work, we map them at a pan-European scale for the year 2020, producing a new dataset consisting of two raster layers containing both variables at an approximate resolution of 100 m. Spatial data from Earth observation missions and derived down-stream products were retrieved and processed using artificial intelligence to first estimate a map of aboveground biomass (AGB). Allometric models were then used to estimate the spatial distribution of CBH using the canopy height values as explanatory variables and CBD using AGB values. Ad-hoc allometric models were defined for this study. Data provided by FIRE-RES project partners and acquired through field inventories was used for validating the final products using an independent dataset of 804 ground-truth sample plots. The CBH and CBD raster maps have, respectively, the following accuracy regarding specific metrics reported from the modeling procedures: (i) coefficient of correlation (R) of 0.445 and 0.330 (p-value < 0.001); (ii) root mean square of error (RMSE) of 3.9 m and 0.099 kg m−3; and (iii) a mean absolute percentage error (MAPE) of 61% and 76%. Regarding CBD, the accuracy metrics improved in closed canopies (canopy cover > 80%) to R = 0.457, RMSE = 0.085, and MAPE = 59%. In short, we believe that the degree of accuracy is reasonable in the resulting maps, producing CBH and CBD datasets at the pan-European scale to support fire mitigation and crown fire simulations.
Forfattere
Johan Asplund Jenni Nordén O. Janne Kjønaas Rieke Lo Madsen Lisa Fagerli Lunde Tone Birkemoe Eivind Kverme Ronold Milda Norkute Ulrika Jansson Damian Petkovic Karlsen Anne Sverdrup-Thygeson Inger Skrede Ine-Susanne Hopland Methlie Sundy Maurice Ulrik Geiran Botten Regine Jusnes Krok Håvard Kauserud Line NybakkenSammendrag
The history of forestry in Fennoscandia spans five centuries, with clear-cutting being the dominant practice since the mid-20th century. This has led to a significant transformation of the forest landscape. In this study we investigated long-term effects of clear-cutting on forest structure and dead wood volumes. We established twelve pairs of spruce forest sites in southeastern Norway, each pair constituting of a mature, previously clear-cut stand and its near-natural counterpart with similar edaphic factors. The near-natural stands had 2.8 times higher volumes of dead wood and a larger proportion of dead wood in late stages of decay. The near-natural stands had on average 36.8 ± 9.1 m3 ha−1 of downed dead wood and 24.1 ± 6.2 m3 ha−1 of standing dead wood. Corresponding numbers for the previously clear-cut stands were 10.2 ± 2.8 m3 ha−1 and 11.9 ± 3.7 m3 ha−1. Forests with lower volumes of dead wood often also had lower connectivity of old spruce forests, which potentially have further negative effects on biodiversity. Furthermore, near-natural stands displayed greater tree size heterogeneity, resulting in a wider variation in light conditions. While no difference was observed in living tree volume, we found only weak evidence for higher basal area in the previously clear-cut stands, which had a higher stem density with more slender stems and shorter crowns. Our findings suggest that managed forests do not develop structures typical of near-natural forests before they become mature for logging. We stress the importance of a thorough site selection for studies of management effects, as forest management history may be confounded with productivity and other edaphic factors. Experimental designs like ours are vital for testing how differences in structure and deadwood volumes, driven by forest management, translate into variations in biodiversity, carbon sequestration and ecosystem functioning in future studies.
Forfattere
Daniele Prodorutti Riccardo Bugiani Vincent Philion Arne Stensvand Emanuela Coller Clelia Tosi Claudio Rizzi Gino Angeli Ilaria PertotSammendrag
Trials were carried out in apple orchards of Emilia-Romagna and Trentino-Alto Adige in northern Italy to investigate the effects of sprinkler irrigation on possible reduction in inoculum and subsequent disease pressure of Venturia inaequalis, the ascomycete causing apple scab. In spring, volumetric spore traps were placed above apple leaf litter containing pseudothecia with ascospores of the fungus. Pseudothecia matured more rapidly in irrigated plots, and 95% of the total number of spores trapped in a season was reached on average 164 degree days (base temperature 0°C) earlier in irrigated compared with nonirrigated plots. On average for seven location/year combinations, more than 50% of the ascospores were trapped following irrigations carried out for 2 h on sunny days before a forecasted rainfall. Subsequently, a much lower number of spores were trapped on rainy days following irrigation. Field trials with scab-susceptible apple cultivars were carried out in the two regions to evaluate the efficacy of sprinkler irrigation on disease. Irrigated and nonirrigated plots were either treated with different fungicide control strategies or not treated. Irrigation significantly reduced the incidence of apple scab at both sites, and the overall number of infected leaves and fruit was reduced by more than 50%. Midday sprinkler irrigation can significantly reduce the inoculum pressure of V. inaequalis in apple orchards. This may be a sustainable management strategy, especially in areas with extended dry periods.
Forfattere
Jean-Claude Grégoire Jochem Bonte Andy Bourke Dragos Cocos Nick Fielding Jostein Gohli Daegan Inward Maartje Klapwijk Christo Nikolov Bjørn Økland Martin Schroeder Florentine Spaans Jozef Vakula Max Blake Rafael De Andrade Moral Maria Destefanis Christine Griffin Andrej Kunca Archie Murchie Cathal Ryan Aoife Smith Hugh F. EvansSammendrag
Six species of Ips de Geer (Coleoptera: Curculionidae; Scolytinae) occur in Europe. They attack weakened or dead conifers but may become aggressive and mass-attack living trees. All species have expanded their ranges in Europe since the late 19th century. Here, we analyse the patterns of this spread and discuss the factors at play. Starting with an assessment of distribution changes of the insects and of their host trees since the nineteenth century, we describe how and, when known, why territorial changes occurred in Fennoscandia (Norway, Sweden, Denmark, and Finland), Central Europe (Czechia, Slovakia, Hungary, Poland, Austria, Germany), the Netherlands, Belgium and Great Britain. Based on these country narratives, we discuss the conditions for, and causes of, territorial expansion. A necessary condition is the presence of host trees of vulnerable ages and sizes, resulting from the post-glaciation expansion of host range. Population changes and territorial expansion are influenced by environmental or anthropic drivers: climatic events (droughts and storms), silvicultural practices and trade. Three main factors favour or hamper the response of the different species to these drivers: active and passive flight capacity, dispersal upon emergence and response to pheromones after take-off, and pre-dispersal mating. These criteria enable identification of differences in the invasive capacities of the six species. In particular, Ips typographus appears to be a poor invader worldwide because of its wide dispersal upon emergence and its delayed response to pheromones. Finally, we discuss the risks to the Irish forests so far uncolonised by Ips species.
Sammendrag
This article aims to increase the knowledge of the roles and functions of public health institutes (PHIs) by exploring and comparing the Scandinavian PHIs, their roots, and developments over time. The research questions are the following: What was the history behind these public institutions? How have they changed over time? Have they followed divergent or parallel paths of change? How, if at all, have they been influenced by public sector reforms? Comparing the three Scandinavian countries based on an institutionalist approach, the article seeks to increase the understanding of the role of PHIs in governing public health. The article is based on documents from parliaments and governments from the public health institutes, supplemented by institution narratives and relevant public health and public administration literature. The Scandinavian PHIs have common roots from the early 1900s, have followed different routes, and have different institutional characteristics and different roles as public health institutions. However, after more than 100 years, the Scandinavian PHIs belong to the international PHI organization. They are responsible for knowledge dissemination, surveillance, and preparedness for the handling of epidemics and pandemics. The article argues for more comparative research on institutions related to public health authorities, such as the PHIs.
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Income comparisons between farm and non-farm households play a crucial role in many aspects of farm policy. Using household income data from tax returns of all Norwegian taxpayers in the period 2006–2015 we study these income differences. We find that the unconditional mean income is higher for farm households, but with important differences depending on the comparison group considered. We also find that the income difference is reduced when we control for differences in the personal characteristics of the different non-farm comparison sub-groups. This finding implies that income comparison using unconditional means, as frequently done in agricultural policy making, is potentially misleading. We also show that the income effect of personal characteristics is not the same for different comparison sub-groups, as has been assumed in previous studies of income disparities. Differences in personal characteristics, and the income effect of those characteristics, therefore need to be accounted for if income comparisons between farmers and non-farmers are to inform farm support policies.
Forfattere
Dylan Grobler Juliana D. Klein Matthew L. Dicken Kolobe L, Mmonwa Michelle Soekoe Michaela van Staden Snorre Hagen Simo Maduna Aletta E. Bester-van der MerweSammendrag
Globally, hammerhead sharks have experienced severe declines owing to continued overexploitation and anthropogenic change. The smooth hammerhead shark Sphyrna zygaena remains understudied compared to other members of the family Sphyrnidae. Despite its vulnerable status, a comprehensive understanding of its genetic landscape remains lacking in many regions worldwide. The present study aimed to conduct a fine-scale genomic assessment of Sphyrna zygaena within the highly dynamic marine environment of South Africa's coastline, using thousands of single nucleotide polymorphisms (SNPs) derived from restriction site-associated DNA sequencing (3RAD). A combination of differentiation-based outlier detection methods and genotype-environment association (GEA) analysis was employed in Sphyrna zygaena. Subsequent assessments of putatively adaptive loci revealed a distinctive south to east genetic cline. Among these, notable correlations between adaptive variation and sea-surface dissolved oxygen and salinity were evident. Conversely, analysis of 111,243 neutral SNP markers revealed a lack of regional population differentiation, a finding that remained consistent across various analytical approaches. These results provide evidence for the presence of differential selection pressures within a limited spatial range, despite high gene flow implied by the selectively neutral dataset. This study offers notable insights regarding the potential impacts of genomic variation in response to fluctuating environmental conditions in the circumglobally distributed Sphyrna zygaena.
Forfattere
Shirin Mohammadi Morten Lillemo Åshild Gunilla Ergon Sahameh Shafiee Stefano Zanotto Jon Arne Dieseth Wendy Marie Waalen Chloé Grieu Anne Kjersti UhlenSammendrag
This study evaluated 22 spring-type faba bean cultivars in the main areas for cultivation of faba bean in Norway to assess the variation of 14 faba bean traits due to cultivar (G), environment (E), and their interaction (G × E), and to assess their stability across environments by using the additive main effects and multiplicative interaction (AMMI) analysis and coefficient of variation (CV). Significant G, E, and G × E effects were found for most traits, with environment accounting for much of the variance in yield and the growing degree days (GDD) to different developmental stages. Yield was highly correlated with thousand kernel weight (TKW) and GDD to BBCH 89 (maturation). The stability of the cultivars was studied for yield, TKW, and GDD to BBCH 89. Stability analysis using the AMMI stability value, yield stability index, CV, and the average sum of ranks identified Birgit, Stella, Bobas, and Macho as the most stable high-yielding cultivars across environments, achieving a mean yield of 6–6.4 tons ha−1. Bobas, Macho, Stella, and Yukon had the most stable TKW (612–699 g) and Bobas, Capri, Trumpet, and Vertigo were the most stable regarding GDD to BBCH 89 (1257°C days, with a base temperature of 5°C). These stable cultivars can be utilized in breeding programs to achieve high and stable faba bean yield in the main growing areas of Norway and other Nordic-Baltic countries.
Forfattere
Rune Andreassen Berit Hansen Liya Pokrovskaya Vladimir Zhakov Daniel Kling Cornelya Klutsch Ida Marie Luna Fløystad Hans Geir Eiken Snorre HagenSammendrag
Despite the high density of brown bears (Ursus arctos piscator) on the Kamchatka peninsula their genetic variation has not been studied by STR analysis. Our aim was, therefore, to provide population data from the Kamchatka brown bear population applying a validated DNA profiling system. Twelve dinucleotide STRs commonly used in Western-European (WE) populations and four additional ones (G10C, G10J, G10O, G10X), were included. Template input ≥ 0.2 ng was successfully amplified. Measurements of precision, stutter and heterozygous balance showed that markers could be reliably genotyped applying the thresholds used for genotyping WE brown bears. However, locus G10X revealed an ancient allele-specific polymorphism that led to suboptimal amplification of all 174 bp alleles (Kamchatka and WE). Allele frequency estimates and forensic genetic parameters were obtained from 115 individuals successfully identified by genotyping 434 hair samples. All markers met the Hardy-Weinberg and linkage equilibrium expectations, and the power of discrimination ranged from 0.667 to 0.962. The total average probability of identity from the 15 STRs was 1.4 ×10−14 (FST = 0.05) while the total average probability of sibling identity was 6.0 ×10−6. Relationship tests revealed several parent-cub and full sibling pairs demonstrating that the marker set would be valuable for the study of family structures. The population data is the first of its kind from the Kamchatka brown bear population. Population pairwise FST`s revealed moderate genetic differentiation that mirrored the geographic distances to WE populations. The DNA profiling system, providing individual-specific profiles from non-invasive samples, will be useful for future monitoring and conservation purposes
Forfattere
Gunda ThömingSammendrag
Conservation biological control (CBC) is a sustainable measure for ecological intensification in agriculture to establish and maintain robust natural enemy populations. CBC is contributing to integrated pest management with reduced use of pesticides and support of native biodiversity in agroecosystems. Despite rapidly expanding research on CBC during the last decades, its application in pest management at the farm level is very limited. Here, we tested a CBC strategy in a 5-year on-farm study at three locations in East Norway. This CBC strategy combined two tools to increase biological control of aphids in spring barley; 1-ATTRACT, the application of a volatile organic compound (VOC) attractant that increases lacewing egg laying, and 2-HABITAT, the maintenance of natural border vegetation. We found that the VOC attractants recruited natural enemies and guided them to the right place at the right time from the border vegetation into the cropping area to control the aphid population efficiently and reliably. The results also showed that the VOC attractants combined with periodical maintained natural border vegetation provided a higher lacewing activity and aphid suppression than with annual sown floral buffer strips. We found that maintained natural border vegetation supported by VOC attractants provided lacewing populations that controlled aphids up to 100 m into the cropping area. Without VOC attractants we recorded lacewing activity up to 50 m from the border into the cropping area if natural border vegetation was available, and up to 25 m if no border vegetation existed. The overall results demonstrated the feasibility of this CBC approach under Norwegian farming conditions leading to the successful adoption of this CBC-strategy by the farming community.
Forfattere
Riccardo Favaro Miroslav Berka Martin Pettersson Gunda Thöming Carla C. M. Arce Maria L. Inácio Ted C. J. Turlings Jorge M. S. Faria Thomas Jung Damien Bazin Alberto Pozzebon Sergio Angeli Luca CappellinSammendrag
Invasive pests and plant pathogens pose a significant threat to ecosystems and economies worldwide, prompting the need of anticipatory strategies. Preventing their introduction by detection at the ports of entry has been proven extremely difficult. This review explores the potential of biogenic volatile detection as a reliable preventive solution. It underscores the importance of early detection and rapid response as integral components of effective invasive pest management, and it discusses the limitations of current control measures and the increasing globalization that facilitates the spread of pests and pathogens. Through a synthesis of existing literature, this review analyzes the Volatile Organic Compound (VOC) emissions in five invasive model species: three insects, Halyomorpha halys, Spodoptera frugiperda, Helicoverpa armigera, a nematode, Bursaphelenchus xylophilus, and an oomycete, Phytophthora ramorum. The review focuses on the specific volatiles, released by both the invasive organisms and the infested host plants. If available, the volatiles emitted from similar species were considered for comparison. Ultimately, this review highlights specific pest volatile and shared Herbivore Induced Plant Volatiles (HIPVs) as a reliable and innovative solution in pest detection. If possible, candidate compounds are provided, whilst the lack of some emphasizes the urge of expanding the information available.
Forfattere
Sarah MuiruriSammendrag
Entomophagy, the consumption of insects, may reduce the negative health and environmental impacts of meat. As one of the novel protein alternatives expected to replace conventional meat consumption, its success will depend on consumer acceptance. To investigate the consumer acceptance of entomophagy, three rounds of a Norwegian survey with 8633 useable responses conducted in 2019/2020, 2021/2022, and 2023/2024 were used. Generalized structural equation modelling was used to test the developed hypotheses. The direct effects of trust, food choice motives, and OCEAN personality traits were investigated. The mediating effects of food safety concerns on the relationship between trust and willingness to try (WTT) food made from insects were also investigated. Social trust and trust in food authorities were positively associated with WTT. No association was found for trust in retailers. Negative associations were found between the effects of social trust and trust in food authorities on food safety concerns, and food safety concern was also a significant mediator. Respondents who emphasized environmental friendliness, health, and novelty were more willing to try, and those who emphasized natural ingredients and familiarity were less willing. Openness was positively associated with WTT, while conscientiousness, extraversion, and agreeableness had a negative association. Gender, education, age and urban living were also found as significant moderators in some paths. The findings of the study imply the need to foster trust among consumers and to emphasize the environmental and health benefits of entomophagy while focusing on increasing consumer familiarity and use of natural ingredients. Personality-focused marketing strategies may also be implored to target consumers high in openness and low in conscientiousness, extraversion, and agreeableness.
Sammendrag
A sustainable dietary transition requires knowledge of the drivers and barriers of dietary choices. We investigate the role of preferences for domestic food, as well as environmental and health concerns, as drivers for the consumption of red and white meat, fish, ready-made plant-based food products and self-identification as some type of meat reducer (flexitarian, vegetarian, or vegan). A survey of 1102 consumers was conducted in Norway with questions about food attitudes, beliefs and preferences regarding health, the environment and domestic food as well as dietary habits and demographics. The results from interval and logistic regression analyses show that stronger preferences for domestic food are associated with higher consumption of red meat and a lower likelihood of eating plant-based food and identifying as a meat reducer. Health concerns are associated with higher consumption of white meat and fish, and environmental concern is associated with lower consumption of white meat and a higher likelihood of eating plant-based food. The results also confirm previous research results that disbelief regarding the negative health and environmental impacts of meat correlate with higher meat consumption and a lower likelihood of eating plant-based food. In addition, we find that people who believe that Norway is a country primarily suited for livestock production have higher consumption of meat and a lower likelihood of eating plant-based food. We conclude that to make certain consumers transition away from meat, it is important to provide domestically produced, plant-based alternatives and to implement policy measures that will generate positive storylines of improved farmer livelihoods.
Sammendrag
Cultured meat (CM) is likely to reduce environmental footprints and health problems and improve animal welfare, but its success in the market will rely on consumer acceptance. A survey was used to investigate consumer acceptance of CM in Norway. The survey was conducted pre the COVID-19 pandemic and during the pandemic with a total of 4,683 usable responses. A partial proportional odds model was estimated, and identical coefficients were not rejected for the two periods. Social trust, trust in food authorities, and support to green parties were positively associated with the willingness to try CM but there was no association with trust in food retailers. Respondents who emphasized natural components and food safety were less willing, and respondents who emphasized health, novelty, environment, and price were more willing. Young, male, highly educated, urban, non-religious, non-vegetarian supporters of green parties were also more willing to try CM, and marketing activities should target these groups.
Forfattere
Jaime Candelas Bielza Lennart Noordermeer Erik Næsset Terje Gobakken Johannes Breidenbach Hans Ole ØrkaSammendrag
Tree species composition is essential information for forest management and remotely sensed (RS) data have proven to be useful for its prediction. In forest management inventories, tree species are commonly interpreted manually from aerial images for each stand, which is time and resource consuming and entails substantial uncertainty. The objective of this study was to evaluate a range of RS data sources comprising airborne laser scanning (ALS) and airborne and satellite-borne multispectral data for model-based prediction of tree species composition. Total volume was predicted using non-linear regression and volume proportions of species were predicted using parametric Dirichlet models. Predicted dominant species was defined as the species with the greatest predicted volume proportion and predicted species-specific volumes were calculated as the product of predicted total volume multiplied by predicted volume proportions. Ground reference data obtained from 1184 sample plots of 250 m2 in eight districts in Norway were used. Combinations of ALS and two multispectral data sources, i.e. aerial images and Sentinel-2 satellite images from different seasons, were compared. The most accurate predictions of tree species composition were obtained by combining ALS and multi-season Sentinel-2 imagery, specifically from summer and fall. Independent validation of predicted species proportions yielded average root mean square differences (RMSD) of 0.15, 0.15 and 0.07 (relative RMSD of 30%, 68% and 128%) and squared Pearson's correlation coefficient (r2) of 0.74, 0.79 and 0.51 for Norway spruce (Picea abies (L.) Karst.), Scots pine (Pinus sylvestris L.) and deciduous species, respectively. The dominant species was predicted with median values of overall accuracy, quantity disagreement and allocation disagreement of 0.90, 0.07 and 0.00, respectively. Predicted species-specific volumes yielded average values of RMSD of 63, 48 and 23 m3/ha (relative RMSD of 39%, 94% and 158%) and r2 of 0.84, 0.60 and 0.53 for spruce, pine and deciduous species, respectively. In one of the districts with independent validation plots of mean size 3700 m2, predictions of the dominant species were compared to results obtained through manual photo-interpretation. The model predictions gave greater accuracy than manual photo-interpretation. This study highlights the utility of RS data for prediction of tree species composition in operational forest inventories, particularly indicating the utility of ALS and multi-season Sentinel-2 imagery.
Sammendrag
It is widely acknowledged that welfare states are important determinants of health in Europe through their mediation of the extent, and impact, of socio-economic positions on health. Arguably, immunisation from market dependencies in healthcare has been associated with core public values of the traditional welfare state and has thus been perceived important for achieving public goods such as social cohesion, equity, and people’s well-being. In recent years, we have seen a change in change in welfare states, where policies aimed at decommodifying the citizens by sheltering them from market dependency, have been supplemented and even replaced by the reverse trend of healthcare recommodification, where the role of markets has been strengthened and access to services through citizenship has been reduced. There is consequently a need for studies that investigate the specific welfare regime features that best contribute to the protection and promotion of the well-being of its citizens. Concentrating on the healthcare part of the welfare state, we analyse differences of subjective perceptions of well-being (self-rated health and happiness) between European countries, by examining how such perceptions are associated with selected indicators related to expenditure, financing, provision, institutional features, primary care orientation, and health decommodification. The paper utilises ten rounds of the European Social Survey (ESS), spanning 20 years and including more than 130,000 individuals from 21 countries. Using multilevel modelling and controlling for individual-level demographic and socio-economic variables, the results suggest that several of the system characteristics are relevant for subjective perceptions of well-being. Public healthcare coverage shows the strongest positive association, while indicators of public–private mix in financing and private provision of healthcare showed less significant results.
Forfattere
Markus Koch Mikael Forsman Henrik Enquist Henrik Baare Olsen Karen Søgaard Gisela Sjøgaard Tove Maria Østensvik Petter Nilsen Lars Louis Andersen Markus Due Jacobsen Mikkel Brandt Rolf Westgaard Paul Jarle Mork Xuelong Fan Morten Wærsted Kaj Bo VeierstedSammendrag
Background Neck pain remains a persistent challenge in modern society and is frequently encountered across a wide range of occupations, particularly those involving repetitive and monotonous tasks. It might be expected that patterns of trapezius muscle activity at work, characterized by few breaks and prolonged periods of sustained muscle activity, are linked to neck pain. However, previous cross-sectional studies have generally failed to establish a definitive association. While some longitudinal studies have suggested that extended periods of heightened muscle activity could be a risk factor for neck pain, these findings often relied on limited participant numbers or specific professional groups. This study aimed to investigate the relationship between trapezius muscle activity and neck pain by pooling data from seven Scandinavian research institutes encompassing a diverse range of occupational backgrounds. Methods Electromyographic (EMG) data for the upper trapezius muscle, collected during working hours, were coupled with questionnaire responses pertaining to neck pain, individual characteristics, and potential confounding variables for a total of 731 subjects. Additionally, longitudinal data from 258 subjects were available. The various EMG datasets were consolidated into a standardized format, and efforts were made to harmonize inquiries about neck pain. Regression analyses, adjusting for sex and height, were conducted to explore the associations between muscle activity variables and neck pain. An exposure index was devised to quantify the cumulative neck load experienced during working hours and to differentiate between various occupational categories. Results The cross-sectional data displayed a distinct pattern characterized by positive associations for brief periods of sustained muscle activity (SUMA) and negative associations for prolonged SUMA-periods and neck pain. The longitudinal data exhibited a contrasting trend, although it was not as pronounced as the cross-sectional findings. When employing the exposure index, notable differences in cumulative muscle load emerged among occupational groups, and positive associations with longitudinal neck pain were identified. Discussion The results suggest that individuals with neck pain experience higher cumulative workloads and extended periods of muscle activity over the long term. In the short term, they appear to compensate by taking frequent short breaks, resulting in a lower cumulative workload. Regardless of their occupation, it is crucial to distribute work breaks throughout the workday to ensure that the cumulative load remains manageable.
Forfattere
Maria Wilhelmina Tuomi Tove Hilde Ågnes Utsi Nigel Gilles Yoccoz Claire W. Armstrong Victoria Gonzalez Snorre Hagen Inga-Svala Jonsdottir Francisco I. Pugnaire Katriona Shea David A. Wardle Sophia Theresa Zielosko Kari Anne BraathenSammendrag
Ongoing Arctic greening can increase productivity and reindeer pasture quality in the tundra. However, greening may also entail proliferation of unpalatable species, with consequences for pastoral social-ecological systems. Here we show extensive greening across 20 reindeer districts in Norway between 2003 and 2020, which has reduced pasture diversity. The allelopathic, evergreen dwarf-shrub crowberry increased its biomass by 60%, with smaller increases of deciduous shrubs and no increase in forbs and graminoids, the most species rich growth forms. There was no evidence for higher reindeer densities promoting crowberry. The current management decision-making process aims at sustainable pasture management but does not explicitly account for pasture changes and reduced diversity. Large-scale shifts towards evergreening and increased allelopathy may thus undermine the resource base for this key Arctic herbivore and the pastoral social-ecological system. Management that is sensitive to changes in pasture diversity could avoid mismanagement of a social-ecological system in transition.
Forfattere
Bastien Parisy Niels M. Schmidt Alyssa R. Cirtwill Edith Villa-Galaviz Mikko Tiusanen Cornelya Klutsch Paul Eric Aspholm Katrine Raundrup Eero J. Vesterinen Helena Wirta Tomas RoslinSammendrag
Global environmental change may lead to changes in community structure and in species interactions, ultimately changing ecosystem functioning. Focusing on spatial variation in fungus–plant interactions across the rapidly changing Arctic, we quantified variation in the identity of interaction partners. We then related interaction turnover to variation in the bioclimatic environment by combining network analyses with general dissimilarity modelling. Overall, we found species associations to be highly plastic, with major rewiring among interaction partners across variable environmental conditions. Of this turnover, a major part was attributed to specific environmental properties which are likely to change with progressing climate change. Our findings suggest that the current structure of plant-root associated interactions may be severely altered by rapidly advancing global warming. Nonetheless, flexibility in partner choice may contribute to the resilience of the system.
Sammendrag
Aquaculture constitutes an important source of protein, essential omega-3 fatty acids and bioavailable micronutrients for humans. The increasing demand for aquatic food products has resulted in more intensive farming practices leading to negative impacts on aquaculture organisms and marine ecosystems. Disease outbreaks cause more than 6 billion USD loss worldwide annually and possess high risks of spreading to the wild fauna especially by viral infections. Vaccination has been proved to be effective to mitigate these problems and widely used as prophylaxis in aquaculture, but available vaccines against viral nervous necrosis (VNN) are limited currently. Plant platforms have several advantages and have been proposed as an alternative biomanufacturing method for vaccine antigens. In the present study, we report: (1) selection and design of recombinant plasmids encoding the capsid proteins (CPs) of two genotypes of NNV, red-spotted grouper nervous necrosis virus (RGNNV) and striped jack nervous necrosis virus (SJNNV); (2) design and optimization of plasmids for transient expression of NNV vaccine antigens in wild type Nicotiana benthamiana, CRISPR/Cas9 genome edited Nicotiana benthamiana and Lactuca sativa; (3) test of different Agrobacterium strains (LBA4404 and AGL1) for effective production of NNVCPs; (4) the expression patterns of NNVCPs over time post infiltration for different plants and cultivars; (5) successful production of NNV antigens in N. benthamiana lines and lettuce cultivars, indicating the potential of the plants as antigen producers in the development of a plant-based vaccine against VNN.
Forfattere
Anastasiia Mykhailenko Piotr Zieliński Aleksandra Bednarz Fredrik Schlyter Martin N. Andersson Bernardo Antunes Zbigniew Borowski Paal Krokene Markus Melin Julia Morales-García Jörg Müller Zuzanna Nowak Martin Schebeck Christian Stauffer Heli Viiri Julia Zaborowska Wiesław Babik Krystyna Nadachowska-BrzyskaSammendrag
In many species, polymorphic genomic inversions underlie complex phenotypic polymorphisms and facilitate local adaptation in the face of gene flow. Multiple polymorphic inversions can co-occur in a genome, but the prevalence, evolutionary significance, and limits to complexity of genomic inversion landscapes remain poorly understood. Here, we examine genome-wide genetic variation in one of Europe's most destructive forest pests, the spruce bark beetle Ips typographus, scan for polymorphic inversions, and test whether inversions are associated with key traits in this species. We analyzed 240 individuals from 18 populations across the species' European range and, using a whole-genome resequencing approach, identified 27 polymorphic inversions covering ∼28% of the genome. The inversions vary in size and in levels of intra-inversion recombination, are highly polymorphic across the species range, and often overlap, forming a complex genomic architecture. We found no support for mechanisms such as directional selection, overdominance, and associative overdominance that are often invoked to explain the presence of large inversion polymorphisms in the genome. This suggests that inversions are either neutral or maintained by the combined action of multiple evolutionary forces. We also found that inversions are enriched in odorant receptor genes encoding elements of recognition pathways for host plants, mates, and symbiotic fungi. Our results indicate that the genome of this major forest pest of growing social, political, and economic importance harbors one of the most complex inversion landscapes described to date and raise questions about the limits of intraspecific genomic architecture complexity.
Sammendrag
This study investigated the effects of substrates composed of various ratios of wood fiber and peat (0, 25, 50, 75, and 100% peat (v/v)) mixed with different amounts of lime (0, 2, 4, 6, and 8 g L−1) and start fertilizer (0, 2, and 4 g L−1 Multimix) on the growth and biomass accumulation of petunia (Petunia x hybrida Vilm ‘Finity F1 Purple’) and basil (Ocimum basilicum L. ‘Marian’) in an ebb-and-flow greenhouse system. Growth parameters included plant height, weight, canopy diameter, and chlorosis symptoms for petunia, along with substrate pH and EC measurements. Petunia showed optimal growth in substrates with higher peat content, while basil produced satisfactory biomass across a pH range of 5–7 regardless of substrate type. Optimal petunia cultivation in 100% wood fiber required a significant dose of start fertilizer without lime. Monitoring pH and EC using pour-through and press methods revealed a pH decrease in substrates with added start fertilizer, while substrates with higher wood fiber content were less acidic. Substrates with over 50% (v/v) wood fiber without lime showed a rapid pH increase over five weeks. The pour-through method generally underestimated EC values compared to the press method. These findings contribute to optimizing the wood fiber/peat blends for sustainable horticulture.
Sammendrag
Growth and flower bud initiation (FBI) were studied in single-stem plants of four biennial-fruiting cultivars in a controlled environment and under field conditions at 60°40′ N. Shoot growth varied widely among the cultivars but was significantly enhanced by high temperature (20 °C) in all cultivars, whereas photoperiod had a subordinate growth effect. FBI data from bud dissection after 6 weeks of cultivation in the phytotron were used to calculate FBI indices for the various cultivars and environment conditions. The indices also varied much among the cultivars but were enhanced by elevated temperature, being highest in ‘Natchez’ and ‘Sweet Royalla’, while ‘Natchez’ was the only cultivar in which FBI was significantly enhanced by short days. The non-vigorous and erect growing ‘Ouachita’ remained vegetative at both temperatures but flowered in spring after overwintering at 0.5 °C. The field experiment confirmed the superior growth vigor of ‘Loch Ness’ and ‘Sweet Royalla’ as well as the photoperiodic sensitivity of ‘Natchez’. The results also confirmed that floral initiation starts in lateral buds located 10–20 nodes below the apex, and from there it progresses in both acropetal and basipetal direction. We conclude that temperature is at least as important as the photoperiod for the control of FBI in biennial-fruiting blackberries.
Sammendrag
This paper presents some features of apple production in Norway, the northernmost apple-growing country in the world. Acceptable growing conditions prevail along the fjords in western Norway and around the lakes in eastern Norway at 60° north. These specific mesic climate conditions are associated with very long summer days (18 h daylight mid-summer) and short winter days (6 h daylight), with frost rarely occurring in the spring along the fjord areas. The present apple-growing technique in Norway is similar to that of other developed apple-growing countries, taking into account that all local growing phases involve a considerable delay in progress (1.5–2 months). Therefore, high-density planting systems based on the use of dwarf rootstocks (mainly M.9) with imported early maturing international apple cultivars are used in most orchards. The most common soil type has high organic matter content (2–18%), which persists due to the cool climate and low mineralization, and a clay content of <15%, which results from the formation of the soil from bedrock. The increase in average temperatures caused by current climatic changes leads to a complex combination of different physiological effects on apples, which can have positive or negative effects on the phenology of the trees. The main advantage of Norwegian apple production is that the quality and aroma of the fruit meet the current demands of the local market.
Sammendrag
Apples are a healthy and environmentally friendly snack, but the consumption of apples in many countries, including Norway, has decreased in the last fifteen years. This trend has a potential negative impact on public health and the environment. In this paper, we use a consumer survey and a random effect ordered logistic regression model to find out what is most important for people when they buy apples. Ten different values are considered and ranked according to individual’s importance. We find that taste and safety are the most important values for the average individual’s choice of apples, while the appearance and type of apple rank third. The least important values are wrapping size and regional origin. Everyday apple eaters are more concerned about pesticide use and less concerned about price than the average consumers. Furthermore, compared to the average consumer, those with low levels of trust in apple producers and authorities care more about pesticides and environmentally friendly production methods, while consumers with a high level of trust care less about these aspects. Our results indicate that to increase the consumption of Norwegian apples, it is important to maintain or improve their reputation as being tasty and safe to eat.
Forfattere
Ingrid Schafroth Sandbakken Hang Su Louise Johansen Yupeng Zhang Einar Ringø Randi Røsbak Igor A. Yakovlev Kathrine Kjos Five Rolf-Erik OlsenSammendrag
The feed legislation allows the use of fish protein hydrolysates in feed for the same species in which it came from, since enzymatic hydrolysis degrades the proteins and eliminates potential prions, which have caused disease in mammals, but not in fish. In this trial, we investigated the effects of partially replacing dietary fishmeal (FM) with salmon protein hydrolysate (FPH) on the intestinal gene expression and microbiota. Atlantic salmon post smolts were either fed a control diet containing 30% fishmeal (FM), a 20% FM diet with 9% salmon hydrolysate (FPH-09) or a 10% FM diet with 18% salmon hydrolysate (FPH-18), until doubling of weight. Gene expression analysis by RNA sequencing of pyloric caeca (PC), midgut (MG) and hindgut (HG) revealed a downregulation of immunological genes involved in inflammation in the intestine of FPH-18 fed salmon compared to salmon fed the FM control. The gene expression of paralogous peptide transporters (PepT) was analyzed by real time quantitative PCR in PC, anterior midgut (AMG), posterior midgut (PMG) and HG of salmon fed all the three diets. The PepT1b paralog had highest relative expression levels in PC and AMG, suggesting that PepT1b is most important for peptide uptake in the anterior intestine. PepT1a was also mainly expressed in the PC and AMG, but at lower levels than PepT1b and PepT2b in the AMG. The PepT2b paralog had high levels of expression in AMG, PMG and HG indicating that it contributed significantly to peptide uptake in the posterior part of the gastrointestinal tract. The gut microbiota in the mucosa and digesta of the MG and HG, were dominated by the phyla Cyanobacteria and Proteobacteria, but also Firmicutes were present. The only dietary effect on the microbiota was the higher prevalence of the phyla Spirochaetes in the mucosa of FPH-18 fed salmon compared to the FM fed salmon. In conclusion, replacing FM with salmon hydrolysate reduced the expression of inflammatory markers in the Atlantic salmon intestine suggesting improved health benefits. The reduced inflammation may be related to the reduced FM content, potentially bioactive peptides in the hydrolysate and/or the altered gut microbial composition.
Forfattere
João Neiva Jorge Manuel Ferreira de Assis Eliza Fragkopoulou Gareth A. Pearson Peter T. Raimondi Laura Anderson Dorte Krause-Jensen Núria Marbà Andrew Want Olga Selivanova Masahiro Nakaoka W. Stewart Grant Brenda Konar Michael Roleda Mikael K. Sejr Cristina Paulino Ester A. SerrãoSammendrag
Amphiboreal taxa are often composed of vicariant phylogroups and species complexes whose divergence and phylogeographic affinities reflect a shared history of chronic isolation and episodic trans-Arctic dispersal. Ecological filters and shifting selective pressures may also promote selective sweeps, niche shifts and ecological speciation during colonization, but these are seldom considered at biogeographical scales. Here we integrate genetic data and Ecologic Niche Models (ENMs) to investigate the historical biogeography and cohesion of the polymorphic rockweed Fucus distichus throughout its immense amphiboreal range, focusing on trans-Arctic asymmetries, glacial/interglacial dynamics, and integrity of sympatric eco-morphotypes. Populations were sampled throughout the Pacific and the Atlantic, from southern rear-edges to the high-Arctic. They were genotyped for seven microsatellites and an mtDNA spacer, and genetic diversity and structure were assessed from global to local scales. ENMs were used to compare niche divergence and magnitude of post-glacial range shifts in Pacific versus Atlantic sub-ranges. Haplotypic and genotypic data revealed distinct and seemingly isolated Pacific vs Arctic/Atlantic gene-pools, with finer-scale regional sub-structuring pervasive in the Pacific. MtDNA diversity was highly structured and overwhelmingly concentrated in the Pacific. Regionally, Alaska showed the highest intra-population diversity but the lowest levels of endemism. Some sympatric/parapatric ecotypes exhibited distinct genotypic/haplotypic compositions. Strikingly, niche models revealed higher Pacific tolerance to maximum temperatures and predicted a much more consolidated presence in the NE Atlantic. Glacial and modern ranges overlapped extensively in the Pacific, whereas the modern Atlantic range was largely glaciated or emerged during the Last Glacial Maximum. Higher genetic and ecogeographic diversity supports a primary Pacific diversification and secondary Atlantic colonization, also likely reflecting the much larger and more stable climatic refugia in the Pacific. The relic distribution and reduced ecological/morphological plasticity in the NE Atlantic are hypothesized to reflect functional trans-Arctic bottlenecks, recent colonization or competition with congeners. Within the Pacific, Alaska showed signatures of a post-glacial melting pot of eastern and southern populations. Genetic/ecotypic variation was generally not sufficiently discontinuous or consistent to justify recognizing multiple taxonomic entities, but support a separate species in the eastern Pacific, at the southern rear-edge. We predict that layered patterns of phylogeographic structure, incipient speciation and niche differences might be common among widespread low-dispersal amphiboreal taxa.
Forfattere
Jason Lee Anders Marie Louise Davey Bram Van Moorter Frode Fossøy Sanne Boessenkool Erling Johan Solberg Erling Meisingset Atle Mysterud Christer Moe RolandsenSammendrag
Parasitic nematodes are ubiquitous and can negatively impact their host by reducing fecundity or increasing mortality, yet the driver of variation in the parasite community across a wildlife host's geographic distribution remains elusive for most species. Based on an extensive collection of fecal samples (n = 264) from GPS marked moose (Alces alces), we used DNA metabarcoding to characterize the individual (sex, age class) and seasonal parasitic nematode community in relation to habitat use and migration behavior in five populations distributed across a wide latitudinal gradient (59.6°N to 70.5°N) in Norway. We detected 21 distinct nematode taxa with the six most common being Ostertagia spp., Nematodirella spp., Trichostongylus spp., T. axei, Elaphostrongylus alces, and an unclassified Strongylida. There was higher prevalence of livestock parasites in areas with larger sheep populations indicating a higher risk of spillover events. The individual level nematode richness was mostly consistent across study areas, while the number and type of nematode taxa detected at each study area varied considerably but did not follow a latitudinal gradient. While migration distance affected nematode beta-diversity across all sites, it had a positive effect on richness at only two of the five study areas suggesting population specific effects. Unexpectedly, nematode richness was higher in winter than summer when very few nematodes were detected. Here we provide the first extensive description of the parasitic nematode community of moose across a wide latitudinal range. Overall, the population-specific impact of migration on parasitism across the distribution range and variation in sympatry with other ruminants suggest local characteristics affect host-parasite relationships.
Sammendrag
Background: Recycling nutrients and organic matter available as waste in urban areas may close nutrient gaps and improve soil quality, but the concentrations of potentially toxic elements (PTEs) are commonly higher than in mineral fertilisers. How quickly may the limits for soil quality be exceeded, and for which elements, if such materials are applied intensively? For a rough answer to this question, we used soil data from ten case farms near Oslo and Bergen (Norway) to estimate how PTE concentrations increased when the demand for nitrogen (N), phosphorus (P) and potassium (K) in a theoretical carrot crop produced every year was covered by compost or digestate from source‑separated food waste, or composted garden waste, compared with manure from horses and poultry which are often kept in peri‑urban areas. Results: With the intensive fertilisation assumed here, the Norwegian soil quality limits for PTEs were reached within 20–85 years, and faster for soil with more organic matter since regulatory limits set by weight discriminate soils with low bulk density. The limits were reached first for Cu and Zn, which are both essential micronutrients for crop plants. The concentrations of macronutrients in the urban waste‑based fertilisers were not well balanced. Rates covering the K demand would lead to high surpluses of P and N. In peri‑urban vegetable growing, high applications of compost are not unusual, but more balanced fertilisation is required. Conclusions: The Norwegian regulations for PTEs in organic soil amendments and agricultural soil are stricter than in the EU, and do not support recycling of organic matter and nutrients from urban waste. Many materials which can only be applied with restricted amounts to Norwegian agricultural soil, may be applied according to crop demand in the EU. Growers utilising urban waste‑based fertilisers intensively should monitor the soil regularly, including PTE analyses. Soil sampling should occur on fixed sampling points to reveal changes in concentrations over time. Norwegian authorities should consider a revision of the organic fertiliser regulation to support recycling of valuable organic materials. There is a need for more data on the PTE concentrations in agricultural soil and organic fertiliser materials. Keywords Cadmium, Copper, Zinc, Smallscale vegetable growing, Food wastes, Urban agriculture, Compost, Digestate
Sammendrag
Soybean pod count is a crucial aspect of soybean plant phenotyping, offering valuable reference information for breeding and planting management. Traditional manual counting methods are not only costly but also prone to errors. Existing detection-based soybean pod counting methods face challenges due to the crowded and uneven distribution of soybean pods on the plants. To tackle this issue, we propose a Soybean Pod Counting Network (SPCN) for accurate soybean pod counting. SPCN is a density map-based architecture based on Hybrid Dilated Convolution (HDC) strategy and attention mechanism for feature extraction, using the Unbalanced Optimal Transport (UOT) loss function for supervising density map generation. Additionally, we introduce a new diverse dataset, BeanCount-1500, comprising of 24,684 images of 316 soybean varieties with various backgrounds and lighting conditions. Extensive experiments on BeanCount-1500 demonstrate the advantages of SPCN in soybean pod counting with an Mean Absolute Error(MAE) and an Mean Squared Error(MSE) of 4.37 and 6.45, respectively, significantly outperforming the current competing method by a substantial margin. Its excellent performance on the Renshou2021 dataset further confirms its outstanding generalization potential. Overall, the proposed method can provide technical support for intelligent breeding and planting management of soybean, promoting the digital and precise management of agriculture in general.
Forfattere
Agampodi Gihan S. D. De Silva Z. K. Hashim Wogene Solomon Junbin Zhao Györgyi Kovács István M. Kulmány Zoltán MolnárSammendrag
Agricultural soil has great potential to address climate change issues, particularly the rise in atmospheric CO2 levels. It offers effective remedies, such as increasing soil carbon content while lowering atmospheric carbon levels. The growing interest in inoculating soil with live microorganisms aims to enhance agricultural land carbon storage and sequestration capacity, modify degraded soil ecosystems, and sustain yields with fewer synthetic inputs. Agriculture has the potential to use soil microalgae as inoculants. However, the significance of these microorganisms in soil carbon sequestration and soil carbon stabilization under field conditions has yet to be fully understood. Large-scale commercial agriculture has focused on the development and use of inoculation products that promote plant growth, with a particular emphasis on enhancing yield attributes. Gaining more profound insights into soil microalgae’s role in soil carbon cycling is necessary to develop products that effectively support soil carbon sequestration and retention. This review comprehensively explores the direct and indirect mechanisms through which soil microalgae contribute to soil carbon sequestration, highlighting their potential as microbial inoculants in agricultural settings. This study underlines the need for more research to be conducted on microalgae inoculation into agricultural soil systems aimed at mitigating carbon emissions in the near future.
Sammendrag
Sweet potato (Ipomoea batatas L. Lam.) is a major source of food in many parts of Ethiopia. In recent years, viral diseases have become the main threat to sweet potato production in Ethiopia. Previous virus survey studies carried out from 1986 to 2020 reported eight viruses infecting sweet potato in Ethiopia. Consequently, obtaining and multiplying virus-free planting materials have been difficult for farmers and commercial multipliers. This study was conducted to detect viruses infecting the five sweet potato varieties used as source plants and compare the virus elimination efficiency between meristem cultures from untreated and heat-treated mother plants and production of virus-free sweet-potato-planting materials. Seven common viruses were tested for, using grafting to Ipomoea setosa, enzyme-linked immunosorbent assay (ELISA) and reverse-transcription polymerase chain reaction (RT–PCR) before and after elimination procedures as screening and confirmatory methods. The sweet potato feathery mottle virus (SPFMV) elimination efficiencies of meristem cultures from untreated (grown at 25 ± 1 °C) and heat-treated (grown at 39 ± 1 °C) potted plants of sweet potato varieties were evaluated and compared. Sweet potato feathery mottle virus (SPFMV) was detected in 12 of the 15 source plants tested. Triple infections of SPFMV, sweet potato chlorotic stunt virus (SPCSV), and sweet potato virus C (SPVC) were detected in one of the fifteen plants. This study reports the detection of SPVC for the first time in sweet potato plants from Ethiopia. The cutting of meristems from heat-treated plants further increased the percentage of virus-free plantlets by ca 10% to ca 16%, depending on the plant variety. Elimination efficiency also seemed to vary among varieties: the greatest difference was observed for ‘Tola’, and the least difference was observed for ‘Guntute’. The present study provided protocols for detecting viruses and generating virus-free sweet-potato-planting materials in Ethiopia.
Sammendrag
The birth process in animals, much like in humans, can encounter complications that pose significant risks to both offspring and mothers. Monitoring these events can provide essential nursing support, but human monitoring is expensive. Although there are commercial monitoring systems for large ruminants, there are no effective solutions for small ruminants, despite various attempts documented in the literature. Inertial sensors are very convenient given their low cost, low impact on animal life, and their flexibility for monitoring animal behavior. This study offers a systematic review of the literature on detecting parturition in small ruminants using inertial sensors. The review analyzed the specifics of published research, including data management and monitoring processes, behaviors indicative of parturition, processing techniques, detection algorithms, and the main results achieved in each study. The results indicated that some methods for detecting birth concentrate on classifying unique animal behaviors, employing diverse processing techniques, and developing detection algorithms. Furthermore, this study emphasized that employing techniques that include analyzing animal activity peaks, specifically recurrent lying down and getting up occurrences, could result in improved detection precision. Although none of the studies provided a completely valid detection algorithm, most results were promising, showing significant behavioral changes in the hours preceding delivery.
Forfattere
Ana Margarida Fernandes Josep Àlvar Calduch-Giner Gabriella V. Pereira Ana Teresa Gonçalves Jorge Dias Johan Johansen Tomé Silva Fernando Naya-Català Carla Piazzon Ariadna Sitjà-Bobadilla Benjamin Costas Luís E. C. Conceição Jorge Manuel de Oliveira Fernandes Jaume Pérez-SánchezSammendrag
The growth of the aquaculture industry requires more sustainable and circular economy-driven aquafeed formulas. Thus, the goal of the present study was to assess in farmed gilthead sea bream (Sparus aurata L.) how different combinations of novel and conventional fish feed ingredients supported proper animal performance in terms of growth and physiological biomarkers of blood/liver/head kidney. A 77-day feeding trial was conducted with three experimental diets (PAP, with terrestrial processed animal protein from animal by-products; NOPAP, without processed animal protein from terrestrial animal by-products; MIX, a combination of alternative ingredients of PAP and NOPAP diets) and a commercial-type formulation (CTRL), and their effects on growth performance and markers of endocrine growth regulation, lipid metabolism, antioxidant defense and inflammatory condition were assessed at circulatory and tissue level (liver, head kidney). Growth performance was similar among all dietary treatments. However, fish fed the PAP diet displayed a lower feed conversion and protein efficiency, with intermediate values in MIX-fed fish. Such gradual variation in growth performance was supported by different biomarker signatures that delineated a lower risk of oxidation and inflammatory condition in NOPAP fish, in concurrence with an enhanced hepatic lipogenesis that did not represent a risk of lipoid liver degeneration.
Forfattere
Live Lingaas Nesse Kristin Forfang Jannice Schau Slettemeås Snorre Hagen Marianne Sunde Abdelhameed Elameen Gro Skøien Johannessen Marianne Stenrød Girum Tadesse Tessema Marit Almvik Hans Geir EikenSammendrag
The abundance and diversity of antimicrobial-resistant bacteria (ARB) and antimicrobial resistance genes (ARGs) in agricultural landscapes may be important for the spread of antimicrobial resistance (AMR) in the environment. The aim of this study was to apply screening methods for ARB and ARGs to investigate the impact of farming on the prevalence of AMR in a country with low antibiotic usage. We have analyzed samples (n = 644) from soil and wild terrestrial animals and plants (slugs, snails, mice, shrews, earthworms, and red clover) collected over two years in agricultural fields accompanied by nearby control areas with low human activity. All samples were investigated for the occurrence of 35 different ARGs using high-throughput quantitative PCR (HT-qPCR) on a newly developed DNA array. In addition, samples from the first year (n = 415) were investigated with a culture-based approach combined with whole-genome sequencing (WGS) to identify antimicrobial-resistant E. coli (AREC). ARGs were detected in 59.5% of all samples (2019 + 2020). AREC, which was only investigated in the 2019 samples, was identified in 1.9% of these. Samples collected in the autumn showed more ARGs and AREC than spring samples, and this was more pronounced for organic fields than for conventional fields. Control areas with low human activity showed lower levels of ARGs and a lack of AREC. The use of livestock manure was correlated with a higher level of ARG load than other farming practices. None of the soil samples contained antibiotics, and no association was found between AMR and the levels of metals or pesticides. High qualitative similarity between HT-qPCR and WGS, together with the positive controls to the validation of our 35 ARG assays, show that the microfluid DNA array may be an efficient screening tool on environmental samples. In conclusion, even in a country with a very low consumption of antimicrobials by production animals, our results support the hypothesis of these animals being a source of AREC and ARGs in agricultural environments, primarily through the use of manure.
Forfattere
Svein Solberg Ole Martin Bollandsås Terje Gobakken Erik Næsset Paromita Basak Laura Innice DuncansonSammendrag
Mapping and quantification of forest biomass change are key for forest management and for forests’ contribution to the global carbon budget. We explored the potential of covering this with repeated acquisitions with TanDEM-X. We used an eight-year period in a Tanzanian miombo woodland as a test case, having repeated TanDEM-X elevation data for this period and repeated field inventory data. We also investigated the use of GEDI space–LiDAR footprint AGB estimates as an alternative to field inventory. The map of TanDEM-X elevation change appeared to be an accurate representation of the geography of forest biomass change. The relationship between TanDEM-X phase height and above-ground biomass (AGB) could be represented as a straight line passing through the origin, and this relationship was the same at both the beginning and end of the period. We obtained a similar relationship when we replaced field plot data with the GEDI data. In conclusion, temporal change in miombo woodland biomass is closely related to change in InSAR elevation, and this enabled both an accurate mapping and quantification wall to wall within 5–10% error margins. The combination of TanDEM-X and GEDI may have a near-global potential for estimation of temporal change in forest biomass.
Sammendrag
Gaining the ability to fly actively was a ground-breaking moment in insect evolution, providing an unprecedented advantage over other arthropods. Nevertheless, active flight was a costly innovation, requiring the development of wings and flight muscles, the provision of sufficient energetic resources, and a complex flight control system. Although wings, flight muscles, and the energetic budget of insects have been intensively studied in the last decades, almost nothing is known regarding the flight-control devices of many crucial insect groups, especially beetles (Coleoptera). Here, we conducted a phylogenetic-informed analysis of flight-related mechanosensors in 28 species of bark beetles (Curculionidae: Scolytinae, Platypodinae), an economically and ecologically important group of insects characterized by striking differences in dispersal abilities. The results indicated that beetle flight apparatus is equipped with different functional types of mechanosensors, including strain- and flow-encoding sensilla. We found a strong effect of allometry on the number of mechanosensors, while no effect of relative wing size (a proxy of flight investment) was identified. Our study constitutes the first step to understanding the drivers and constraints of the evolution of flight-control devices in Coleoptera, including bark beetles. More research, including a quantitative neuroanatomical analysis of beetle wings, should be conducted in the future.>
Forfattere
Fernanda Leiva Florent Abdelghafour Muath K Alsheikh Nina Elisabeth Nagy Jahn Davik Aakash ChawadeSammendrag
Common scab (CS) is a major bacterial disease causing lesions on potato tubers, degrading their appearance and reducing their market value. To accurately grade scab-infected potato tubers, this study introduces “ScabyNet”, an image processing approach combining color-morphology analysis with deep learning techniques. ScabyNet estimates tuber quality traits and accurately detects and quantifies CS severity levels from color images. It is presented as a standalone application with a graphical user interface comprising two main modules. One module identifies and separates tubers on images and estimates quality-related morphological features. In addition, it enables the extraction of tubers as standard tiles for the deep-learning module. The deep-learning module detects and quantifies the scab infection into five severity classes related to the relative infected area. The analysis was performed on a dataset of 7154 images of individual tiles collected from field and glasshouse experiments. Combining the two modules yields essential parameters for quality and disease inspection. The first module simplifies imaging by replacing the region proposal step of instance segmentation networks. Furthermore, the approach is an operational tool for an affordable phenotyping system that selects scab-resistant genotypes while maintaining their market standards.
Forfattere
Charles D. Minsavage-Davis G. Matt Davies Siri Vatsø Haugum Pål Thorvaldsen Liv Guri Velle Vigdis VandvikSammendrag
Northern European heathlands and moorlands dominated by Calluna vulgaris are internationally recognized for their conservation importance while also supporting traditional, low-intensity agriculture and game hunting. Managed burning plays an important role in maintaining these ecosystems but climate and land-use changes, including planned or unplanned transitions to forest and woodland, are now resulting in concerns about increasing wildfire frequency, intensity and severity. In combination with rapidly-changing regulations surrounding managed burning, this has highlighted the need to understand current and potential future fuel structures to effectively model fire behaviour and develop evidence-based regulations surrounding managed burning. We developed standardized heathland fuel descriptions and modeled associated fire behaviour for heathlands in the UK (England, Scotland) and Norway. Utilizing existing fuel and biomass data, we used cluster analysis to identify five distinct fuel models and assessed how they were represented across C. vulgaris life-stages, geographic locations and EUNIS habitat-types. We validated their independence by examining predicted fire rates of spread based across three representative fire weather scenarios. Fire rates of spread differed between C. vulgaris life stages, regardless of EUNIS community or country. Mature stage and taller building stage fuels produced the highest fire rates of spread and early, shorter building and pioneer stage fuels produced the lowest. Moss and litter fuel loads proved to be important determinants of fire rate of spread in a high-risk fire weather scenario. An understanding of links between fuel types and potential fire behaviour can be used to inform management and policy decisions. To aid in this, we used classification tree analysis to link fuel types to easily-observable characteristics. This will facilitate pairing the fuel models with fire behaviour prediction software to make evidence-based assessments of management fire safety and wildfire risk.
Sammendrag
Interest in dairy cow-calf contact (CCC) systems is growing, yet limited research had been focused on CCC in a pasture setting. Our study aimed to evaluate the performance of pastured dairy cows and calves with or without CCC through machine milk yield and composition, cow body condition score (BCS) and body weight (BW) decrease, and calf body weight gain (BWG). We also examined calf intake of concentrates, artificially reared calves’ milk intake, and the health of both cows and calves. Conducted on a commercial dairy freestall farm and summer farm in Norway from May to August 2021, the study included twenty cow-calf pairs: 17 Norwegian Red (NRF) and three NRF × Holstein crossbreeds. They were divided into two treatments: cow-calf contact (CC, n = 10) or early separation (ES, n = 10), each with two groups of five cow-calf pairs. CC pairs had full CCC on pasture until 6 weeks postpartum and part-time contact in weeks 7 and 8 (weaning). ES pairs were separated 1–3 h after birth, kept on separate pastures with no contact between ES cows and calves. ES calves’ received daily milk allowances of 12–14 L (weeks 0–6), reduced to 8 L (week 7) and further to 4 L (week 8). From week 9, all calves were denied access to any milk (ES) or cows (CC). During weeks 0–6, CC cows had a daily machine milk yield 23.7 kg lower/cow than ES cows. The difference was likely affected by nursing and other factors (parity and inhibited milk ejection), and persisted during weaning, with CC cows delivering 8.3 kg less/cow/day in weeks 10 and 11 postpartum. Fat and protein content in machine milk showed no significant difference, while lactose content was lower in milk from CC cows than ES cows (week 5 postpartum). CC cows had a lower BW decrease compared to ES cows (CC: 913 g/day, ES: 1415 g/day from pasture day one through week 9). ES calves had an average milk intake of 10.7 L/calf/day (weeks 0–6), and consumed more concentrates than CC calves. Calves’ daily BWG did not differ between treatments in weeks 0–6 (CC: 1340 and ES: 1250 g/day) and decreased for both treatments during weaning (CC: 1050 g/day, ES: 920 g/day in weeks 6–9). Inhibited milk ejection during machine milking was a challenge in CC cows, prompting oxytocin injections to prevent mastitis. Allowing calves full CCC or providing whole milk near ad libitum can result in similar BWG and health in calves. Further research should explore strategies to enhance milk ejection in pastured CCC cows.
Forfattere
Martha Irene Grøseth Linda Karlsson Håvard Steinshamn Marianne Johansen Alemayehu Kidane Sagaye Egil PrestløkkenSammendrag
Studies have shown that extended wilting of grass before ensiling can improve the metabolizable protein (MP) value of the grass silage, both from increased rumen microbial crude protein (MCP) yield and ruminally undegraded crude protein (RUP). We hypothesised that extending the wilting of grass before ensiling can increase milk and milk protein production in dairy cows. Consequently, increased silage MP can reduce the need for MP in concentrate, estimated as amino acids absorbed in the small intestine (AAT20). To test this, a continuous feeding experiment was conducted, with 48 early- to mid-lactation Norwegian Red dairy cows. Treatments were 2 wilting levels of grass silages: 260 vs. 417 g dry matter (DM) per kg, and 2 qualities of concentrates differing in MP, in a 2 × 2 factorial arrangement (n = 12). The concentrates were low MP (LMP); 104 g AAT20/kg DM, and high MP (HMP); 123 g AAT20/kg DM, supplied at 8.75 kg DM/cow per day. The cows had ad libitum access to the grass silages. The experiment lasted for 11 weeks. The first 2 weeks, where cows received identical diets, were used as the covariate period. Those data together with data collected the last 4 weeks were used for statistical evaluation of treatments. Increasing DM concentration in silage reduced lactic acid, ammonia nitrogen and proportion of methionine in the grass silage, while it increased residual water-soluble carbohydrates, pH, proportion of aspartic acid and rumen degradability of NDF. There was no difference between treatments in daily silage DM intake (13.1 kg), milk yield (30.2 kg) or milk composition. However, feeding HMP increased urea and uric acid in urine, and urea in blood plasma, thereby reduced N efficiency. No major differences were found for rumen pH, or purine derivatives to creatinine index in urine, as indication for MCP. There was significantly more histidine in blood plasma when cows were fed HMP concentrate. In conclusion, increased DM concentration in silage and HMP concentrate did not increase milk production or milk protein yield in this study.
Sammendrag
Biochar is a recalcitrant carbon-rich solid produced by pyrolysis of organic residues, and its application to soil is considered a promising approach to mitigate climate change, as biochar resists decomposition to readily contributes to soil carbon (C) sequestration. The IPCC provides a basis for future national-scale accounting of the changes in soil C stocks following biochar application to cropland soils. The IPCC Tier 1 approach for biochar is based on fixed emission factors to estimate biochar C sequestration. In contrast, the Tier 2 approach allows countries to use local emission factors and climate data to calculate the contribution of biochar to soil C sequestration. Accurate accounting of biochar C sequestration is essential for ensuring the credibility of C offsetting projects, as well as providing incentives for implementing biochar in C credit schemes, calling for comparative analyses of the different biochar Tier approaches. Here we retrieved biochar samples from local producers and measured their H/Corg to estimate the persistence of biochar in Norwegian croplands post application. Various feedstocks were considered, including forest residues, woody wastes, manure, sludge, and straw. For all biochar samples, the 100-year stable C fraction was calculated at ≥ 0.945, thus exceeding the default Tier 1 value (0.8). Biochar sourced from woody- and forestry residues had a Corg content above the default Tier 1 value (0.77). Based on this and data about national feedstock supplies, we compared the theoretical potential of biochar soil C sequestration to mitigate climate change in Norway, using the IPCC Tier 1 and Tier 2 approaches. Biochar C sequestration in soil was calculated at 0.79 Tg CO2-eq yr−1 and 0.92 to 0.96 Tg CO2-eq yr−1, respectively for the Tier 1 and Tier 2 approaches, thus, underlining that the choice of IPCC Tier approach can have a large impact on the estimated mitigation potential of biochar.
Sammendrag
The ability to identify locations that have a high risk of fungal decay is important for service life planning and analysing changes in risk can help inform scenarios where climate change may shift some areas into states that are more suitable for decay. The ERA5-Land database was used to obtain soil moisture and temperature data, which was applied in a dose–response model for in-ground wood decay. Dose was used as an indicator of decay risk and to produce hazard maps over Germany for the past two climate normals (1963–1992 and 1993–2022). There was an increase of 3.16 dose days over Germany. Brandenburg and Mecklenburg-Vorpommern, had the highest decay risk in both climate normals and southern states experienced the lowest decay risk. In Germany, larger dose increases were seen in central to southern latitude regions and mid to high altitudes. With further climate change, conditions that are most suitable for in-ground wood decay may shift to locations that previously did not experience such risk. It is important to be informed of the durability requirements of wood products in areas where increased resistance may be required.
Forfattere
Stephen Amiandamhen Synne Strømmen Ingeborg Olsdatter Ohren Nordraak Andreas Treu Erik LarnøySammendrag
This study investigated the potential of wood particles from Ciol®-treated wood in particleboard production. Ciol® is a renewable formulation from water, citric acid, and sorbitol, which has been commercially developed as a promising alternative for wood modification. Radiata pine wood was impregnated with 60% and 85% concentrations of the Ciol® solution for 150 mins. The impregnated boards were cured and subsequently planned. Particleboards were thereafter produced from the wood shavings using urea formaldehyde (UF) and melamine urea formaldehyde resin (MUF). The boards were produced with or without the use of ammonium nitrate as a hardener. The wood particles and produced boards were characterized via analytical techniques and standard test methods. The effect of Ciol® treatment and its concentration on the properties of the shavings and the particleboards was investigated as well as the effect of the resin type on the panel properties. The use of MUF without the hardener gave the best bending strength of 13 N/mm² and modulus of elasticity of 3187 N/mm². However, there was no significant difference in the results obtained when the hardener was added to MUF resins. Recycling Ciol®-treated wood shavings in particleboard production proved to be a promising approach with MUF resins.
Forfattere
Linn Vassvik Vigdis Vandvik Silje Andrea Hjortland Östman Anders Nielsen Aud Helen HalbritterSammendrag
Plant reproduction in alpine environments is affected by climate both directly through climate impacts on growth and phenology, and indirectly through impacts on the biotic interactions affecting pollination success. These effects can be highly variable in time and space. In this study we investigated how different abiotic and biotic factors influence reproductive investment and success in populations of Ranunculus acris across an alpine landscape over a two-year period. In an alpine area at Finse, southern Norway, we measured reproductive investment (total seed mass) and reproductive success (seed-set rate) in 38 sites differing in temperature (related to elevation) and length of the growing season (related to time of snowmelt). To assess biotic interactions, we measured floral density and pollinator visits and conducted a supplemental pollen experiment. Reproductive investment and success increased with temperature, but only when floral density and/or number of pollinator visits was high, and only in the warmer year (2016). Reproduction in R. acris was pollen-limited in both years, especially at warmer temperature and in sites with early snowmelt. Pollinator visits increased with temperature and with higher floral density, suggesting a shift in relative importance of the biotic factors (from plants to pollinators) in limiting reproduction with increasing temperature. Our study shows that reproductive investment and success in R. acris is affected by climate through the interactive effects of abiotic and biotic processes. These effects vary between years and across the landscape, suggesting a potential for larger-scale buffering of climate change effects in heterogeneous landscapes.
Sammendrag
With the intensification of global climate change and environmental stress, research on abiotic and biotic stress resistance in maize is particularly important. High temperatures and drought, low temperatures, heavy metals, salinization, and diseases are widespread stress factors that can reduce maize yields and are a focus of maize-breeding research. Molecular biology provides new opportunities for the study of maize and other plants. This article reviews the physiological and biochemical responses of maize to high temperatures and drought, low temperatures, heavy metals, salinization, and diseases, as well as the molecular mechanisms associated with them. Special attention is given to key transcription factors in signal transduction pathways and their roles in regulating maize stress adaptability. In addition, the application of transcriptomics, genome-wide association studies (GWAS), and QTL technology provides new strategies for the identification of molecular markers and genes for maize-stress-resistance traits. Crop genetic improvements through gene editing technologies such as the CRISPR/Cas system provide a new avenue for the development of new stress-resistant varieties. These studies not only help to understand the molecular basis of maize stress responses but also provide important scientific evidence for improving crop tolerance through molecular biological methods.
Sammendrag
Floral initiation in biennial-fruiting red raspberry is controlled by the interaction of temperature and photoperiod. To determine the threshold temperatures for short day (SD) floral initiation in early- and late-flowering cultivars, we exposed plants of ‘Glen Ample’, ‘Glen Mor’ and ‘Duo’ to 12°, 16° and 20°C in a daylight phytotron under naturally decreasing autumn daylength at Ås, Norway (59°40’N). While none of the cultivars ceased growing or initiated floral primordia at 20°C, ‘Glen Ample’ and ‘Glen Mor’ initiated buds at 12° and 16°C, whereas ‘Duo’ formed flower buds at 12°C only. Surprisingly, however, all plants flowered abundantly in spring after winter chilling in the dark at −1.5 ± 0.5°C for 7 months. We discuss two possible explanations for this unusual and novel flowering response. Fractional induction is well known in raspberry, and we visualise that in SD at 20°C, the SD requirement is fulfilled, while floral induction is still blocked by inappropriate temperature. A vernalisation-like response is alternatively suggested as this can take place at near-freezing temperatures in the dark. A combination of the two mechanisms is also possible and likely. We conclude, however, that the two floral induction processes are fundamentally different and controlled by different physiological mechanisms.
Sammendrag
Background Vegetated infiltration systems such as raingardens and bioswales are challenging for plant growth and survival due to fluctuating hydrological conditions and further subsequent stresses. Aim Here, we investigated the effect of fluctuation hydrology on growth and flowering and subsequent winter frost hardiness or spring salt tolerance for two common raingarden plant species, Filipendula ulmaria, and Calamagrostis ×acutiflora ‘Karl Foerster’, under controlled conditions. Methods During summer, plants were exposed to four hydrological regimes, each with a different combination of repeating dry and wet cycles. Then, after natural winter acclimation and storage, plants went through standardized freezing tests to determine LT50 and regrowth potential or were exposed to four levels of salt treatments (Control, 28 mM, 56 mM, and 84 mM NaCl) in the following spring. Results We found that fluctuating hydrology reduced the growth of Filipendula ulmaria, experiencing cycles of 72 hours of flooding and 264 hours of drained conditions, followed by a reduction of growth and flowering after salt exposure. Calamagrostis xacutiflora was less responsive to both fluctuating hydrology and salinity. Cycles with the longest dry conditions (Wet-dry cycles) showed the strongest negative effect on the performance of tested species. The hydrological regimes did not influence freezing tolerance in either species. Conclusion Moderate hydrological fluctuations did not cause damage to vegetation in vegetated infiltration systems, at least under shaded conditions. At the same time, drought tolerance is an important trait for species and cultivars in raingardens during hydrological fluctuations. Our prediction that hydrological conditions that negatively affected plant growth would reduce subsequent frost and salinity tolerance was only partially supported.
Forfattere
Even Unsgård Erling Meisingset Inger Maren Rivrud Gunn Randi Fossland Pål Thorvaldsen Vebjørn Veiberg Atle MysterudSammendrag
In Europe, over a third of the agricultural area is grass meadows used for livestock grazing and fodder production. Grass meadows provide a food source for wild ungulates causing human-wildlife conflicts due to forage removal. Few experimental studies have quantified biomass loss with enough replicates to determine how surrounding environments influences level of biomass removal. Using an exclosure experiment on 57 grassland meadows over five years at the northwest coast of Norway covering 10 650 km2, we quantified biomass removal by red deer (Cervus elaphus L.) and how environmental factors impacted biomass loss (Study 1). Furthermore, we examined development of biomass loss and crude protein concentration in five fields throughout the growing season (Study 2). The average predicted biomass loss to red deer grazing was 16% for the first harvest, and 7.3% for the second harvest (Study 1). Biomass loss increased with red deer density from 0% at the lowest density (0.6 red deer harvested/km2) to 31% at the highest density (4 red deer harvested/km2). Biomass loss increased from 12% to 32.8% as terrain ruggedness index (TRI) rose from 2.1 to 7.1. Absolute biomass loss increased towards time of grass harvest (Study 2). Crude protein concentration was higher in unfenced plots during the period before first harvest, but not between first and second harvest (Study 2). The quantification of biomass removal at a large spatial scale over several years in this study provides a better understanding of factors causing variation in losses.
Sammendrag
Cultivation of microalgae has gained significant interest as an alternative protein source, potentially becoming a target commodity recovered from microalgae-based wastewater treatment. This study examined a semi-continuous cultivation strategy to optimize protein accumulation of the indigenous freshwater chlorophytes, Lobochlamys segnis and Klebsormidium flaccidum, and simultaneously remove nutrients from wastewater efficiently. A strain-specific regime was made based on a fixed biomass concentration at the start of 24-h cultivation cycle, i.e., a constant initial cell density, which regulated harvesting and fresh medium supply volume according to the dilution rate. Six cultivation cycles were conducted in lab-scale 1L reactors with a synthetic municipal wastewater. Lobochlamys segnis and K. flaccidum grew exponentially in all cycles. The biomass productivity was 573 and 580 mg L–1 day–1, in which the total protein consisted of 62 and 45% of dry cell weight (dw), respectively. When a culture medium deficient in nitrogen and phosphorus was used, protein level was significantly reduced. L. segnis consumed all NH4+ and PO43– supplied by the medium replacement, giving the removal rate of 9.2 and 5.2 mg L–1 day–1. Whereas K. flaccidum removed 13.8 mg L–1 day–1 NH4+ without completing PO43– removal. The amino acid profile of both strains was characterized by glutamic acids content (4–5% dw). We concluded that the designed cultivation regime would support a constant biomass production with stable and high protein content, along with an efficient removal of nutrient from the wastewater.
Sammendrag
The brown marine macroalga Alaria esculenta contains phlorotannins as polyphenolic compounds in its cell walls. This study aimed to understand their antioxidant effects on preserving the lipids in fillets of freshly-slaughtered farmed Atlantic salmon (Salmo salar). First, soluble phlorotannins were extracted from wild-grown population of A. esculenta in North Norway (Bodø) using solid/liquid extraction. A small-scale solid/liquid extraction (15 mg mL−1) with 70% acetone showed that 84% of total soluble phlorotannins (25.10 mg g−1 dry weight) were extracted after the first out of four extraction steps. In a large-scale extraction (3 mg 400 mL−1), the contents of soluble phlorotannins and the DPPH-based antioxidant capacities (measured as IC50) in 70% acetone- and water-based crude extracts were similar. Water is preferred extraction solvent for the following experiment because it complies with food safety standards, may minimise work procedures and is in accordance with the principles of Green Chemistry. Secondly, the antioxidant properties of the soluble phlorotannins were tested through incubating salmon fillets (Norwegian Quality Cuts) in water-based extracts. After six days of storage on ice, the peroxide value of Alaria-treated fillets was lower compared to the control (without Alaria-extract), while the p-anisidine and free fatty acid values remained unchanged. This indicates the phlorotannins’ inhibitory effect on the formation of primary rather than secondary lipid oxidation products. This study demonstrated that the antioxidant properties of the soluble phlorotannins extracted from A. esculenta using water can preserve the nutritional value of salmon fillets to extend the seafood’s shelf-life.
Forfattere
Paulina Paluchowska Simeon Rossmann Erik Lysøe Marta Janiszewska Krystyna Michalak Rasoul Heydarnajad Giglou Mousa Torabi Giglou May Bente Brurberg Jadwiga Śliwka Zhimin YinSammendrag
Background Potato virus Y (PVY) is among the economically most damaging viral pathogen in production of potato (Solanum tuberosum) worldwide. The gene Rysto derived from the wild potato relative Solanum stoloniferum confers extreme resistance to PVY. Results The presence and diversity of Rysto were investigated in wild relatives of potato (298 genotypes representing 29 accessions of 26 tuber-bearing Solanum species) using PacBio amplicon sequencing. A total of 55 unique Rysto-like sequences were identified in 72 genotypes representing 12 accessions of 10 Solanum species and six resistant controls (potato cultivars Alicja, Bzura, Hinga, Nimfy, White Lady and breeding line PW363). The 55 Rysto-like sequences showed 89.87 to 99.98% nucleotide identity to the Rysto reference gene, and these encoded in total 45 unique protein sequences. While Rysto-like26 identified in Alicja, Bzura, White Lady and Rysto-like16 in PW363 encode a protein identical to the Rysto reference, the remaining 44 predicted Rysto-like proteins were 65.93 to 99.92% identical to the reference. Higher levels of diversity of the Rysto-like sequences were found in the wild relatives of potato than in the resistant control cultivars. The TIR and NB-ARC domains were the most conserved within the Rysto-like proteins, while the LRR and C-JID domains were more variable. Several Solanum species, including S. antipoviczii and S. hougasii, showed resistance to PVY. This study demonstrated Hyoscyamus niger, a Solanaceae species distantly related to Solanum, as a host of PVY. Conclusions The new Rysto-like variants and the identified PVY resistant potato genotypes are potential resistance sources against PVY in potato breeding. Identification of H. niger as a host for PVY is important for cultivation of this plant, studies on the PVY management, its ecology, and migrations. The amplicon sequencing based on PacBio SMRT and the following data analysis pipeline described in our work may be applied to obtain the nucleotide sequences and analyze any full-length genes from any, even polyploid, organisms. Keywords Amplicon sequencing, AmpSeq, Extreme resistance, Hyoscyamus niger, PacBio, Physalis peruviana, PVY, Solanum
Sammendrag
Forest age structure is one of the most important ecological indicators of forest sustainability in terms of biodiversity, forest history, harvesting potentials, carbon storage, and recreational values. The available information on the forest age is most often stand age from forest management plans or national forest inventories. Depending on the definition, stand age is often not a good indicator for the biological age of the dominant trees in a stand. Here, we used 6,998 increment cores from dominant Norway spruce (Picea abies L.) and Scots pine (Pinus sylvestris L.) sampled on National Forest Inventory (NFI) plots throughout Norway to gain a better understanding of the age structure of Norway spruce and Scots pine stands in Norway, and on the relationship between the recorded stand age and the biological age of dominant trees on the NFI plots. In forest with stand ages indicating that the stand was established after the abandonment of selective harvesting in favor of even-aged management dominated by clear-cutting methods (ca.1940 C.E.), we found no systematic difference between the biological age of the sampled trees and the stand age assessed by the NFI. In older stands, there was a large difference between the stand age and the age of the overstory trees with the sampled age trees occasionally being hundreds of years older than the stand age. Our study also reveals that the area of forest with old Norway spruce and Scots pine trees ≥ 160 years old is considerably higher than the corresponding area estimate based on information derived from the stand age only. These results are important as the stand age is often used to characterize status with respect to forest naturalness, biodiversity, guide protection efforts, and describe the appropriate and allowed management activities.
Forfattere
Ståle Haaland Josef Hejzlar Bjørnar Eikebrokk Geir Orderud Ma. Cristina Paule‐Mercado Petr Porcal Jiří Sláma Rolf David VogtSammendrag
Over the past four decades, an increase in Dissolved Natural Organic Matter (DNOM) and colour, commonly referred to as browning, has been noted in numerous watercourses in the northern hemisphere. Understanding the fluctuations in DNOM quality is a prerequisite for gaining insights into the biogeochemical processes governing DNOM fluxes. Such knowledge is also pivotal for water treatment plants to effectively tailor their strategies for removing DNOM from raw water. The specific ultraviolet absorbance (sUVa) index has been a widely applied measurement for assessing DNOM quality. The sUVa index is the UV absorbance (OD254) of water normalized for DNOM concentration. We have used a long-term dataset spanning from 2007 to 2022, taken from the Malše River in South Bohemia, to model DNOM and the sUVa index. We have applied regression models with a process-oriented perspective and have also considered the influence of climate change. Both DNOM and the sUVa index is positively related to temperature, runoff and pH, and negatively related to ionic strength over the studied period. Two distinct model approaches were employed, both explaining about 40% of the variation in sUVa over the studied period. Based on a moderate IPCC monthly climate scenario, simulations indicate that both DNOM and the sUVa index averages remain fairly stable, with a slight increase in winter season minima projected towards the year 2099. A slight decline in summer season maxima is simulated for DNOM, while the sUVa summer maximum remain stable. These findings suggest a robust resilience in both DNOM and the sUVa index against anticipated changes in temperature and runoff for the Malše River in South Bohemia.
Forfattere
Kristian Hansen Matthias Koesling Håvard Steinshamn Bjørn Gunnar Hansen Tommy Dalgaard Sissel HansenSammendrag
In this study, 200 Norwegian dairy farms were analyzed over three years to compare greenhouse gas emissions, nitrogen (N) intensity, gross margin, and land use occupation between organically and conventionally managed farms. Conventionally managed farm groups were constructed based on propensity matching, selecting the closest counterparts to organically managed farms (n=15). These groups, each containing 15 farms, were differentiated by an increasing number of matching variables. The first group was matched based on geographical location, milk quota, and milking cow units. In the second match, the proportion of milking cows in the total cattle herd was added, and in the third, the ratio of milk delivered to milk produced and concentrate usage per dairy cow were included. The analysis showed that the conventionally managed farms (n=185) had higher greenhouse gas emissions (1.42 vs 0.98 kg CO2 per 2.78 MJ of edible energy from milk and meat, calculated as GWP100-AR4) and higher N intensity (6.9 vs 5.0 kg N input per kg N output) compared to the organic farms (N=15). When comparing emissions per kg of energy-corrected milk (ECM) delivered, conventional farms also emitted more CO2 (1.07 vs 0.8 kg CO2 per kg ECM). Furthermore, conventionally managed farms showed lower gross margins both in terms of NOK per 2.78 MJ edible energy delivered (5.8 vs 6.5 NOK) and per milking cow unit (30 100 vs 34 400 NOK), and they used less land (2.9 vs 3.6 m² per 2.78 MJ edible energy delivered) compared to organic farms. No differences were observed among the three conventionally managed groups in terms of emissions, N intensity, land use occupation, and gross margin.
Forfattere
Elena Valkama Domna Tzemi Ulises Ramon Esparza-Robles Alina Syp Adam O'Toole Peter MaenhoutSammendrag
Soil management strategies involving the application of organic matter (OM) inputs (crop residues, green and livestock manure, slurry, digestate, compost and biochar) can increase soil carbon storage but simultaneously lead to an increase in non-CO2 greenhouse gas (GHG) emissions such as N2O. Although multiple meta-analyses have been conducted on the topic of OM input impacts on GHG, none has focused specifically on European arable soils. This study plugs this gap and can assist policymakers in steering European agriculture in a more sustainable direction. The objective of this meta-analysis was to quantify how OM inputs of different nature and quality, but also the application strategy, can mitigate soil N2O emissions in different pedoclimatic conditions in Europe. We quantitatively synthesised the results of over 50 field experiments conducted in 15 European countries. Diverse arable crops, mainly cereals, were cultivated in monoculture or in crop rotations on mineral soils. Cumulative N2O emissions were monitored during periods of 30–1070 days in treatments, which received OM inputs, alone or in combination with mineral N fertiliser; and in controls fertilised with mineral N. The overall effect of OM inputs had a slight tendency to reduce N2O emissions by 10% (n = 53). With the increasing carbon-to-nitrogen ratio of the OM inputs, this mitigation effect became more pronounced. In particular, compost and biochar significantly reduced N2O emissions by 25% (n = 6) and 33% (n = 8) respectively. However, their effect strongly depended on pedoclimatic characteristics. Regarding the other types of OM inputs studied, a slight N2O emission reduction can be achieved by their application alone, without mineral N fertiliser (by 16%, n = 17). In contrast, their co-application with mineral N fertiliser elevated emissions to some extent compared to the control (by 14%, n = 22). We conclude that amongst the seven OM inputs studied, the application of compost and biochar are the most promising soil management practices, clearly demonstrating N2O emission reduction compared to mineral N fertiliser. In contrast, other OM inputs had a small tendency to mitigate N2O emissions only when applied without mineral N fertiliser.
Forfattere
Peter Maenhout Claudia Di Bene Maria Luz Cayuela Eugenio Diaz-Pines Anton Govednik Frida Keuper Sara Mavsar Rok Mihelic Adam O'Toole Ana Schwarzmann Marjetka Suhadolc Alina Syp Elena ValkamaSammendrag
Soil organic carbon (SOC) sequestration in agricultural soils is an important tool for climate change mitigation within the EU soil strategy for 2030 and can be achieved via the adoption of soil management strategies (SMS). These strategies may induce synergistic effects by simultaneously reducing greenhouse gas (GHG) emissions and/or nitrogen (N) leaching. In contrast, other SMS may stimulate emissions of GHG such as nitrous oxide (N2O) or methane (CH4), offsetting the climate change mitigation gained via SOC sequestration. Despite the importance of understanding trade-offs and synergies for selecting sustainable SMS for European agriculture, knowledge on these effects remains limited. This review synthesizes existing knowledge, identifies knowledge gaps and provides research recommendations on trade-offs and synergies between SOC sequestration or SOC accrual, non-CO2 GHG emissions and N leaching related to selected SMS. We investigated 87 peer-reviewed articles that address SMS and categorized them under tillage management, cropping systems, water management and fertilization and organic matter (OM) inputs. SMS, such as conservation tillage, adapted crop rotations, adapted water management, OM inputs by cover crops (CC), organic amendments (OA) and biochar, contribute to increase SOC stocks and reduce N leaching. Adoption of leguminous CC or specific cropping systems and adapted water management tend to create trade-offs by stimulating N2O emissions, while specific cropping systems or application of biochar can mitigate N2O emissions. The effect of crop residues on N2O emissions depends strongly on their C/N ratio. Organic agriculture and agroforestry clearly mitigate CH4 emissions but the impact of other SMS requires additional study. More experimental research is needed to study the impact of both the pedoclimatic conditions and the long-term dynamics of trade-offs and synergies. Researchers should simultaneously assess the impact of (multiple) agricultural SMS on SOC stocks, GHG emissions and N leaching. This review provides guidance to policymakers as well as a framework to design field experiments and model simulations, which can address knowledge gaps and non-intentional effects of applying agricultural SMS meant to increase SOC sequestration.
Forfattere
Alice Budai Daniel Rasse Thomas Cottis Erik J. Joner Vegard Martinsen Adam O'Toole Hugh Riley Synnøve Rivedal Ievina Sturite Gunnhild Søgaard Simon Weldon Samson ØpstadSammendrag
Carbon content is a key property of soils with importance for all ecosystem functions. Measures to increase soil carbon storage are suggested with the aim to compensate for agricultural emissions. In Norway, where soils have relatively high carbon content because of the cold climate, adapting management practices that prevent the loss of carbon to the atmosphere in response to climate change is also important. This work presents an overview of the potential for carbon sequestration in Norway from a wide range of agricultural management practices and provides recommendations based on certainty in the reported potential, availability of the technology, and likelihood for implementation by farmers. In light of the high priority assigned to increased food production and degree of self-sufficiency in Norway, the following measures were considered: (1) utilization of organic resources, (2) use of biochar, (3) crop diversification and the use of cover crops, (4) use of plants with larger and deeper root systems, (5) improved management of meadows, (6) adaptive grazing of productive grasslands (7) managing grazing in extensive grasslands, (8) altered tillage practices, and (9) inversion of cultivated peat with mineral soil. From the options assessed, the use of cover crops scored well on all criteria evaluated, with a higher sequestration potential than previously estimated (0.2 Mt CO2-equivalents annually). Biochar has the largest potential in Norway (0.9 Mt CO2-equivalents annually, corresponding to 20% of Norwegian agricultural emissions and 2% of total national emissions), but its readiness level is not yet achieved despite interest from industry to apply this technology at large scale. Extensive grazing and the use of deep-rooted plants also have the potential for increasing carbon storage, but there is uncertainty regarding their implementation and the quantification of effects from adapting these measures. Based on the complexities of implementation and the expected impacts within a Norwegian context, promising options with substantial payoff are few. This work sheds light on the knowledge gaps remaining before the presented measures can be implemented.
Sammendrag
This paper asks whether, and if so how, it is possible to design a system characterised by coordination across sectors and levels of governance aimed at governing AMR. The ambition is, firstly, to analyse how coordination problems materialise in the governing of the AMR problem, and secondly, with an emphasis on the structure of decision-making and communication processes, to probe into how coordination of AMR governance is achieved. The paper’s focus is on Norway, which stands out as one of the better performing countries for AMR governance. Drawing on literature on coordination and governance, the paper argues that effective coordination of AMR governance is more likely to follow a ‘bottom-up’ sequencing pattern. It thus provides a study of the systems for governing AMR in a multi-level setting. Through public documents, literature and interviews with key officials involved in AMR management, the paper illustrates the importance of – and organisational barriers to – inter-sectoral cooperation and coordinated strategies and actions at different levels of governance.
Sammendrag
Erwinia amylovora, the causative agent of fire blight of pome fruits and other rosaceous plants belongs to the group of regulated quarantine pests. The aim of this work was to characterize the populations of E. amylovora in Norway and their geographical distribution. A total of 238 E. amylovora isolates recovered from symptomatic host plants in Norway between 1986 and 2004 were genotyped by means of a short sequence repeat (SSR) marker (ATTACAGA) on plasmid pEa29. The SSR region was amplified and amplicon size determined using fluorescent labelling and rapid, automated capillary gel electrophoresis. All isolates contained the pEa29 plasmid harbouring the investigated marker. In total, ten genotypes were identified, of which two were detected only once. The number of repeats varied from 3 to 13, with 43% of the isolates containing five repeats. Of 17 isolates collected between 1986 and 1991, all but one contained five repeats, whereas more variation was observed in isolates from the period 2000 to 2004. Most of the isolates (80%) originated from Cotoneaster bullatus, hence no relationship between genotype of the isolate and host species that it was isolated from could be detected. This historic data suggests multiple introductions of E. amylovora to Norway.
Sammendrag
Aim Seedling recruitment is a vital process for forest regeneration and is influenced by various factors such as stand composition, climate, and soil disturbance. We conducted a long-term field experiment (18 years) to study the effects of these factors and their interactions on seedling recruitment. Location Our study focused on five main species in boreal mixed woods of eastern Canada: trembling aspen (Populus tremuloides), paper birch (Betula papyrifera), white spruce (Picea glauca), balsam fir (Abies balsamea), and white cedar (Thuja occidentalis). Methods Sixteen 1-m2 seedling monitoring subplots were set up in each of seven stands originating from different wildfires (fire years ranging from 1760 to 1944), with a soil scarification treatment applied to every other subplot. Annual new seedling counts were related to growing-season climate (mean temperature, growing degree days and drought code), scarification, and stand effects via a Bayesian generalized linear mixed model. Results Soil scarification had a large positive effect on seedling recruitment for three species (aspen, birch and spruce). As expected, high mean temperatures during the seed production period (two years prior to seedling emergence) increased seedling recruitment for all species but aspen. Contrary to other studies, we did not find a positive effect of dry conditions during the seed production period. Furthermore, high values of growing degree days suppressed conifer seedling recruitment. Except for white cedar, basal area was weakly correlated with seedling abundance, suggesting a small number of reproductive individuals is sufficient to saturate seedling recruitment. Conclusion Our findings underscore the importance of considering multiple factors, such as soil disturbance, climate, and stand composition, as well as their effects on different life stages when developing effective forest management strategies to promote regeneration in boreal mixed-wood ecosystems.
Forfattere
Tobias Karl David Weber Lutz Weihermüller Attila Nemes Michel Bechtold Aurore Degré Efstathios Diamantopoulos Simone Fatichi Vilim Filipović Surya Gupta Tobias L. Hohenbrink Daniel R. Hirmas Conrad Jackisch Quirijn de Jong van Lier John Koestel Peter Lehmann Toby R. Marthews Budiman Minasny Holger Pagel Martine van der Ploeg Shahab Aldin Shojaeezadeh Simon Fiil Svane Brigitta Szabó Harry Vereecken Anne Verhoef Michael Young Yijian Zeng Yonggen Zhang Sara BonettiSammendrag
Hydro-pedotransfer functions (PTFs) relate easy-to-measure and readily available soil information to soil hydraulic properties (SHPs) for applications in a wide range of process-based and empirical models, thereby enabling the assessment of soil hydraulic effects on hydrological, biogeochemical, and ecological processes. At least more than 4 decades of research have been invested to derive such relationships. However, while models, methods, data storage capacity, and computational efficiency have advanced, there are fundamental concerns related to the scope and adequacy of current PTFs, particularly when applied to parameterise models used at the field scale and beyond. Most of the PTF development process has focused on refining and advancing the regression methods, while fundamental aspects have remained largely unconsidered. Most soil systems are not represented in PTFs, which have been built mostly for agricultural soils in temperate climates. Thus, existing PTFs largely ignore how parent material, vegetation, land use, and climate affect processes that shape SHPs. The PTFs used to parameterise the Richards–Richardson equation are mostly limited to predicting parameters of the van Genuchten–Mualem soil hydraulic functions, despite sufficient evidence demonstrating their shortcomings. Another fundamental issue relates to the diverging scales of derivation and application, whereby PTFs are derived based on laboratory measurements while often being applied at the field to regional scales. Scaling, modulation, and constraining strategies exist to alleviate some of these shortcomings in the mismatch between scales. These aspects are addressed here in a joint effort by the members of the International Soil Modelling Consortium (ISMC) Pedotransfer Functions Working Group with the aim of systematising PTF research and providing a roadmap guiding both PTF development and use. We close with a 10-point catalogue for funders and researchers to guide review processes and research.
Forfattere
Sara A Meier Melanie Furrer Nora Nowak Renato Zenobi Monica Alterskjær Sundset Reto Huber Steven A. Brown Gabriela WagnerSammendrag
Reindeer in the Arctic seasonally suppress daily circadian patterns of behavior present in most animals. In humans and mice, even when all daily behavioral and environmental influences are artificially suppressed, robust endogenous rhythms of metabolism governed by the circadian clock persist and are essential to health. Disrupted rhythms foster metabolic disorders and weight gain. To understand circadian metabolic organization in reindeer, we performed behavioral measurements and untargeted metabolomics from blood plasma samples taken from Eurasian tundra reindeer (Rangifer tarandus tarandus) across 24 h at 2-h intervals in four seasons. Our study confirmed the absence of circadian rhythms of behavior under constant darkness in the Arctic winter and constant daylight in the Arctic summer, as reported by others.1 We detected and measured the intensity of 893 metabolic features in all plasma samples using untargeted ultra-high-performance liquid chromatography-mass spectrometry (UPLC-MS). A core group of metabolites (66/893 metabolic features) consistently displayed 24-h rhythmicity. Most metabolites displayed a robust 24-h rhythm in winter and spring but were arrhythmic in summer and fall. Half of all measured metabolites displayed ultradian sleep-wake dependence in summer. Irrespective of the arrhythmic behavior, metabolism is rhythmic (24 h) in seasons of low food availability, potentially favoring energy efficiency. In seasons of food abundance, 24-h rhythmicity in metabolism is drastically reduced, again irrespective of behavioral rhythms, potentially fostering weight gain.
Sammendrag
Biomethanation represents a promising approach for biomethane production, with biofilm-based processes like trickle bed reactors (TBRs) being among the most efficient solutions. However, maintaining stable performance can be challenging, and both pure and mixed culture approaches have been applied to address this. In this study, inocula enriched with hydrogenotrophic methanogens were introduced to to TBRs as bioaugmentation strategy to assess their impacts on the process performance and microbial community dynamics. Metagenomic analysis revealed a metagenome-assembled genome belonging to the hydrogenotrophic genus Methanobacterium, which became dominant during enrichment and successfully colonized the TBR biofilm after bioaugmentation. The TBRs achieved a biogas production with > 96 % methane. The bioaugmented reactor consumed additional H2. This may be due to microbial species utilizing CO2 and H2 via various CO2 reduction pathways. Overall, implementing bioaugmentation in TBRs showed potential for establishing targeted species, although challenges remain in managing H2 consumption and optimizing microbial interactions.
Forfattere
Ragnhild Aabøe Inglingstad Tove Gulbrandsen Devold Nicola Damiano Anna Caroline Holene Nina Svartedal Irene Comi Tone Inger Eliassen Tora Asledottir Ellen Kathrine Ulleberg Gerd VegarudSammendrag
Six cattle breeds native to Norway, have for almost half a century been at risk of extinction. Due to their small population sizes, they have hardly been improved by breeding for many decades. Still, the endangered breeds represent a source of genetic diversity with special milk qualities compared to the modern breed, Norwegian red (NRF). This study reports for the first time a detailed overview of their milk composition. Milk from seven native breeds, in total 200 individuals, were included in the study. Rare genetic variants of αs1-and αs2-casein, and β-casein A1 and κ-casein B were more prevalent in milk form the endangered breeds compared to NRF. Moreover, milk from these six breeds showed better renneting properties and lower incidences of non-coagulating milk, compared to the NRF milk, which showed better acid coagulation properties. This study shows the potential for native breeds in small-scale production of high-quality rennet cheeses.
Forfattere
Abirami Ramu Ganesan Kannan Mohan Sabariswaran Kandasamy Ramya Preethi Surendran Ragavendhar Kumar Durairaj Karthick Rajan Jayakumar RajarajeswaranSammendrag
Black Soldier Fly (Hermetia illucens [L.], Diptera: Stratiomyidae) larvae (BSFL) production from food waste is gaining interest. Food waste, a heterogeneous mix of agro-food and catering leftovers serves as a challenging feedstock for BSF growth due to its varying nutrient composition. BSF, are classified as polyphagous insects with a digestive system featuring midgut for digestion and nutrient absorption. The conversion of food waste by BSFL is heavily influenced by Enterococcus, Klebsiella, Morganella, Providencia, and Scrofimicrobium, which play a vital role in substrate utilization. These microbes determine growth patterns, longevity, oviposition, and egg hatchability, which are intricately tied to the sugar and protein content of their dietary substrates. Pre-treatment techniques including hydrothermal treatment, ionization, pulse electric field discharge, and microbial treatment showed better efficiency in improving the wet waste biomass surface area and waste recovery ratio. In terms of environmental sustainability, a life cycle assessment (LCA) of food waste to BSF conversion facility yields a low global warming potential (GWP) score of 17.36 kg CO2 per ton of functional unit with a significant environmental impact during pre-treatment of food waste at a mass-rearing of BSFL. Therefore, this review emphasizes the digestive system, and gut microbiota of BSFL, with food waste-nutrient utilization by the BSFL. Environmentally promising steps involved in the valorization of food waste resources were evaluated in detail. This review also covers the international regulations involved in food waste fed BSFL, and techno-economic assessment to optimize its valuable nutrients for the new economy in waste management with less environmental footprint.
Forfattere
Tilde Hjermann Nikolai Antonsen Bilet Inger Maren Rivrud Erling Meisingset Pål Thorvaldsen Atle MysterudSammendrag
Grazing by wildlife on agricultural land is widespread across geographical regions, and can cause human–wildlife conflicts due to reduced crop yield when the grazing pressure is high. Growing red deer (Cervus elaphus) populations in Europe call for an increased understanding of their grazing patterns to mitigate damages. We quantified how red deer grazing pressure (grazing presence and grazing level) on agricultural grass meadows (n = 60) in Norway varied across multiple spatial scales. We used a nested, hierarchical study design transcending from a broad scale (meadows across the landscape) to intermediate (between nearby meadows) and local (within-meadow) scales, allowing us to identify at which scale the variation in grazing pressure was strongest. We estimated how grazing was determined by broad-scale factors influencing forage availability and quality through population density, distance to coastline, and differences between the first versus second harvest, by intermediate-scale factors in terms of meadow management causing differences in botanical composition and quality, and by local-scale factors in terms of perceived predation risk and disturbance. At a broad scale, higher population densities were associated with higher grazing pressure, and more grazing occurred before the first compared to the second harvest. Intermediate-scale factors explained the most variation of grazing pressure from red deer, with higher grazing pressure on newly renewed meadows compared to other nearby meadows. On a local scale, more grazing occurred closer to the forest edge, providing cover, and further away from infrastructure, with increased risk and disturbance. Overall, our study highlights how drivers of grazing pressure on agricultural land vary across spatial scales. Population reductions on a broader scale may have some effect in reducing the grazing pressure, but renewed meadows will nevertheless attract red deer, causing higher grazing pressure compared to neighbouring meadows. This insight is crucial for determining effective mitigation strategies facing rising red deer populations across Europe.
Sammendrag
Seasonal pollen allergy is a major public health concern, with many different pollen aeroallergens being present in the atmosphere at varying levels during the season. In Norway, information about spatiotemporal variation of pollen aeroallergens is currently lacking, leading to reduced ability to manage and treat seasonal allergies. Seven pollen aeroallergens (alder, hazel, willow, birch, pine, grass and mugwort) were monitored daily for 16 years from 12 regions and coalesced to create regional pollen calendars. Seasonal statistics, such as seasonal pollen integral (SPIn), onset, duration and periods of high and very high concentrations, were calculated for all pollen types and regions. High days were further modelled with SPIn in a linear regression framework to investigate the connection between the strength of the season and number of days above high pollen thresholds. The tree pollen season occurred between January and mid-July, with the pollen aeroallergens birch and pine being the most prominent in all regions. The herb pollen season was observed to occur between June and mid-August, although mugwort was almost completely absent. The grass pollen season was mostly mild on average but more severe in some regions, primarily Kristiansand. South-east regions of Oslo, Kristiansand and Lillehammer had the overall highest pollen load, while northern regions of Bodø, Tromsø and Kirkenes had the overall lowest pollen loads. SPIn and days above high pollen thresholds had positive highly significant relationships (R2 > 0.85) for all pollen types, bar mugwort. Regional pollen calendars and seasonal statistics contribute to reliable information that can be used by medical professionals to effectively and timely manage and treat seasonal pollen allergies in Norway. Further research is needed to determine sensitization profiles of pine and willow.
Sammendrag
Context In high-latitude regions, variable weather conditions during the growing season and in winter cause considerable variation in forage grass productivity. Tools for predicting grassland status and yield, such as field measurements, satellite image analysis and process-based simulation models, can be combined in decision support for grassland management. Here, we calibrated and validated the BASic GRAssland (BASGRA) model against dry matter and Leaf area index data from temporary grasslands in northern Norway. Objective The objective of this study was to compare the performance of model versions calibrated against i) only region-specific ground data, ii) both region-specific ground and Sentinel-2 satellite data and, iii) field trial data from other regions. Methods Ground and satellite sensed data including biomass dry matter, leaf area index, and autumn and spring ground cover from 2020 to 2022 were acquired from 13 non-permanent grassland fields at four locations. These data were input to BASGRA calibrations together with soil and daily weather data, and information about cutting and nitrogen fertilizer application regimes. The effect of the winter season was taken into account in simulations by initiating the simulations either in autumn or in early spring. Results Within datasets, initiating the model in spring resulted in higher dry matter prediction accuracy (normalised RMSE 22.3–54.0 %) than initiating the model in autumn (normalised RMSE 41.1–93.4 %). Regional specific calibrations resulted in more accurate biomass predictions than calibrations from other regions while using satellite sensing data in addition to ground data resulted in only minor changes in biomass prediction accuracy. Conclusion All regional calibrations against data from northern Norway changed model parameter values and improved dry matter prediction accuracy compared with the reference calibration parameter values. Including satellite-sensed data in addition to ground data in calibrations did not further increase prediction accuracy compared with using only ground data. Implications Our findings show that regional data from farmers’ fields can substantially improve the performance of the BASGRA model compared to using controlled field trial data from other regions. This emphasises the need to account for regional diversity in non-permanent grassland when estimating grassland production potential and stress impact across geographic regions. Further use of satellite data in grassland model calibrations would probably benefit from more detailed assessments of the effect of grass growth characteristics and light and cloud conditions on estimates of grassland leaf area index and biomass from remote sensing.
Sammendrag
Context Traditional critical nitrogen (N) dilution curve (CNDC) construction for N nutrition index (NNI) determination has limitations for in-season crop N diagnosis and recommendation under diverse on-farm conditions. Objectives This study was conducted to (i) develop a new rice (Oryza sativa L.) critical N concentration (Nc) determination approach using vegetation index-based CNDCs; and (ii) develop an N recommendation strategy with this new Nc determination approach and evaluate its reliability and practicality. Methods Five years of plot and on-farm experiments involving three japonica rice varieties were conducted at fourteen sites in Qixing Farm, Northeast China. Two machine learning (ML) methods, random forest (RF) and extended gradient boosting (XGBoost) regression, were used to fuse multi-source data including genotype, environment, management, growth stage, normalized difference vegetation index (NDVI) and normalized difference red edge (NDRE) from portable active canopy sensor RapidSCAN. The CNDC was established using NDVI and NDRE instead of aboveground biomass (AGB) measured by destructive sampling. A new in-season N diagnosis and recommendation strategy was further developed using direct and indirect NNI prediction using multi-source data fusion and ML models. Results The new CNDC based on NDVI or NDRE explained 94−96 % of Nc variability in the evaluation dataset when it was coupled with environmental and agronomic factors using ML models. The ML-based PNC and NNI prediction models explained 85 % and 21–36 % more variability over simple regression models using NDVI or NDRE in the evaluation dataset, respectively. The new in-season N diagnosis strategy using the NDVI and NDRE-based CNDCs and plant N concentration (PNC) predicted with RF model and multi-source data fusion performed slightly better than direct NNI prediction, explaining 7 % more of NNI variability and achieving 89 % of the areal agreement for N diagnosis across all evaluation experiments. Integrating this new N management strategy into the precision rice management system (as ML_PRM) increased yield, N use efficiency (NUE) and economic benefits over farmer’s practice (FP) by 7–15 %, 11–71 % and 4–16 % (161–596 $ ha−1), respectively, and increased NUE by 11–26 % and economic benefits by 8–97 $ ha−1 than regional optimum rice management (RORM) under rice N surplus status under on-farm conditions. Conclusions In-season rice N status diagnosis can be improved using NDVI- and NDRE-based CNDC and PNC predicted by ML modeling with multi-source data fusion. Implications The active canopy sensor- and ML-based in-season N diagnosis and management strategy is more practical for applications under diverse on-farm conditions and has the potential to improve rice yield and ecological and economic benefits.
Forfattere
Mélanie Spedener Jenny Larsen Valaker Juliette Helbert Franziska Veronika Schubert Karen Marie Mathisen Marie Vestergaard Henriksen Anders Nielsen Gunnar Austrheim Barbara ZimmermannSammendrag
Livestock summer grazing in mountains and forests in Norway is generally considered beneficial to biodiversity. In this study we investigated if this is the case for cattle in boreal production forest. We collected biodiversity data on field layer vegetation, floral resources and flower-visiting insects in young spruce plantations that were planted 2–10 years ago. We picked young spruce plantations inside and outside well-established cattle grazing areas. On each plantation, we sampled fenced and unfenced plots (20 * 20 m each). This study design allowed us to investigate long-term effects of cattle grazing as well as short-term effects of excluding cervids only and short-term effects of excluding cervids and cattle. Long-term cattle grazing reduced the abundance of woody plants and reduced the abundance of flowers. Excluding cervids for two summers led to reduced height of woody plants (shrubs and heather) and to increased flower abundance. In contrast, excluding cervids and cattle for two summers led to increased height of graminoids, herbs and woody plants, to higher abundance of graminoids, higher flower abundance and higher abundance of flower-visiting insects. In conclusion, cattle affected the studied system in different ways and to a larger extent than native cervids. Our study shows that we must be careful when inferring results from cattle grazing studies on grasslands to forest ecosystems. As this study documents a negative effect of cattle on floral resources and flower-visiting insects, and we currently are facing a global pollination crisis, a careful consideration of the current practice of cattle grazing in boreal forest might be needed.
Forfattere
Fride Høistad Schei Mie Prik Arnberg John-Arvid Grytnes Maren Stien Johansen Jørund Johansen Anna Birgitte Milford Anders Røynstrand Mari Mette TollefsrudSammendrag
Climate change and human activities have accelerated the spread of non-native species, including forest pests and pathogens, significantly contributing to global biodiversity loss. Pathogens pose a significant threat to forest ecosystems due to a lack of coevolution with native hosts, resulting in ineffective defence mechanisms and severe consequences for the affected tree species. Ash dieback, caused by the fungus Hymenoscyphus fraxineus, is a relatively new invasive forest pathogen threatening ash (Fraxinus excelsior) with mortality rates in northern Europe reaching up to 80 %. The loss of ash due to dieback has severe ecological implications, potentially leading to an extinction cascade as ash provides crucial habitats and resources for many organisms. Despite this, the consequences of ash dieback on associated communities are largely unknown. To address this, we analysed changes in species richness, vegetation structure, and composition in 82 permanent vegetation plots across 23 Norwegian woodlands. We compared data collected before and 10–14 years after the emergence of ash dieback. In these woodlands, ash significantly declined in cover, leading to changes in tree species composition and facilitating the establishment of other woody tree species like hazel (Corylus avellana) and the invasive species sycamore (Acer pseudoplatanus). Despite these changes in the tree species composition, no significant alterations were observed in the understory plant community, indicating a degree of ecosystem resilience or a lagging community response. At this point, and with our focus on the vascular plants, we do not find support for cascading effects due to ash dieback. However, our findings demonstrate that one invasive species is facilitating the expansion of another, raising concerns about potential ecological imbalance and cascading effects in the future.
Forfattere
Daniel Ruiz Potma Gonçalves Thiago Inagaki Luis Gustavo Barioni Newton La Scala Junior Maurício Roberto Cherubin João Carlos de Moraes Sá Carlos Eduardo Pellegrino Cerri Adriano AnselmiSammendrag
Soils are the third largest carbon pool on Earth and play a crucial role in mitigating climate change. Therefore, understanding and predicting soil carbon sequestration is of major interest to mitigate climate change globally, especially in countries with strong agricultural backgrounds. In this study, we used a new database composed of 5029 samples collected up to 1-meter depth in three biomes that are most representative of agriculture, Pampas (Prairie), Cerrados (Savanna), and Atlantic Forest (Forest), to explore soil organic carbon (SOC) stocks and its environmental drivers. The Cerrado (Savanna) biome was the only one where croplands presented higher SOC stocks than native vegetation (Native vegetation 121.23 Mg/ha and croplands 127.85 Mg/ha or 5 % higher). From the tested models, the Random Forest outperformed the others, achieving an R2 of 0.64 for croplands and 0.56 for native vegetation. The accuracy of the models varied with soil depth, showing better predictions in shallow layers for croplands and deeper layers for native vegetation. Our results highlight the importance of clay content, precipitation, net primary production (NPP), and temperature as key predictors for soil carbon stocks in the studied biomes. The findings emphasize the importance of protecting the surface layers, especially in the Cerrado biome, to enhance SOC stocks and promote sustainable land management practices. Moreover, the results provide valuable insights for the development of nature-based carbon markets and suggest potential strategies for climate change mitigation. Enhancing our understanding of SOC dynamics and adopting precise environmental predictors will contribute to the formulation of targeted soil management strategies and accelerate progress toward achieving climate goals.
Forfattere
Diress Tsegaye Alemu Christian Pedersen Svein Olav Krøgli Anders Bryn Kerstin Potthoff Wenche DramstadSammendrag
Mountain areas in Norway provide important resources for livestock grazing. These resources are crucial for agricultural production in a country with limited agricultural land and a climate and topography that restrict production of feed and food. A key contributor in the harvest of these resources has been mountain summer farming and outfield grazing in general. However, the use of mountainous grazing resources has been declining strongly for several decades with the regrowth of formerly open areas as a consequence. In contrast, recreational use, number of holiday cabins and associated infrastructure is rapidly increasing. Conflicts between recreational and agriculture use have received increasing attention in different media. We investigated the spatial patterns of cabin development and key grazing areas in Norwegian mountain areas, analysing data on livestock, cabins, and associated infrastructure. We found a large number of cabins and associated infrastructure within high-quality grazing areas indicating that the quality of grazing has not been adequately considered in the location of new cabins. Taking into consideration that cabin development seems not to decrease, the reduced availability of grazing resources may result in an increasing level of conflict and also impact food security in the long run.
Forfattere
X. Díaz de Otálora B. Amon L. Balaine F. Dragoni F. Estellés G. Ragaglini M. Kieronczyk Grete H. M. Jørgensen A. del PradoSammendrag
CONTEXT European dairy cattle production systems (DPS) are facing multiple challenges that threaten their social, economic, and environmental sustainability. In this context, it is crucial to implement options to promote the reconnection between crop and livestock systems as a way to reduce emissions and enhance nutrient circularity. However, given the sector's diversity, the successful implementation of these options lacks an evaluation framework that jointly considers the climatic conditions, farm characteristics, manure management and mineral fertilisation practices of DPS across Europe. OBJECTIVE This study aims to develop a modelling and statistical framework to assess the effect of climatic conditions, farm characteristics, manure management and mineral fertilisation practices on the on-farm sources of greenhouse gas (GHG) emissions and nitrogen (N) losses from ten contrasting case studies for dairy production across Europe, identifying options for emissions mitigation and nutrient circularity. METHODS Using the SIMSDAIRY deterministic whole-farm modelling approach, we estimated the GHG emissions and N losses from the ten case studies. SIMSDAIRY captures the effect of different farm management choices and site-specific conditions on nutrient cycling and emissions from different components of a dairy farm. In addition, we applied the Factor Analysis for Mixed Data multivariate statistical approach to quantitative and qualitative variables and identified relationships among emissions, nutrient losses, and the particular characteristics of the case studies assessed. RESULTS AND CONCLUSIONS The results showed how intensive case study farms in temperate climates were associated with lower enteric emissions but higher emissions from manure management (e.g. housing). In contrast, semi-extensive case study farms in cooler climates exhibited higher N losses and GHG emissions, directly linked to increased mineral fertilisation, excreta during grazing, and slurry application using broadcast. Furthermore, the results indicated opportunities to improve nutrient circularity and crop-livestock integration by including high-quality forages instead of concentrates and substituting mineral fertilisers with organic fertilisers. SIGNIFICANCE The presented framework provides valuable insights for designing, implementing, and monitoring context-specific emission mitigation options and nutrient circularity practices. By combining whole-farm modelling approaches and multivariate statistical methods, we enhance the understanding of the interactions between sources of N losses and GHG emissions. We expect our findings to inform the adoption of emissions reduction and circularity practices by fostering the recoupling between crop and livestock systems.
Forfattere
Rasmus Bang Stine Samsonstuen Bjørn Gunnar Hansen Mario Guajardo Hanne Møller Jon Kristian Sommerseth Julio C. Goez Ola FlatenSammendrag
CONTEXT Researchers have identified numerous strategies to improve economic performance and reduce greenhouse gas (GHG) emission intensity in combined milk and beef production on dairy farms. However, there remains a need to better understand how the effectiveness of these strategies varies under different operational conditions. OBJECTIVE This study aims to examine how the economic and GHG emission intensity mitigation effectiveness of increased milk yield, extended longevity of dairy cows, reduced age at first calving, and intensified beef production from bulls depend on operational conditions in dual purpose cattle systems. METHOD We present a quantitative framework to (1) economically optimize production at farm level under various constraints and (2) calculate corresponding GHG emissions. The framework is tailored for Norwegian dual-purpose cattle systems and used to assess the economic and GHG emission intensity mitigation effects of incremental adjustments in relevant decisions. RESULTS AND CONCLUSIONS The results show that increased milk yield, extended productive life of dairy cows, reduced age at first calving, and lower slaughter age of bulls can lead to economic and climatic win-wins in terms of higher gross margins and reduced emissions per kg of protein produced. However, they may also result in lose-win and win-lose outcomes depending on the operational conditions. All four measures free up roughage production capacity, which, if used to maintain/increase milk and/or beef production, typically results in economic gains. However, if e.g., the available milk quota or space prevent this, economic losses may occur. The climate impact also depends on how the freed-up capacity is used: if it boosts production, the effects vary based on the scale and type of increase and the farm's initial setup, while unused capacity leads to reduced emission intensity. Conflicts typically arise when: 1) the extra capacity increases less climate-friendly production, raising emission intensity despite economic gains, or 2) extra capacity cannot be used, causing economic losses despite climate benefits. Our results also show that what can be labeled a win in climate terms, and to what extent, depends on the selected target metric(s). SIGNIFICANCE Governments and societies strive to balance food production with environmental goals. In this context, it is essential to identify farm-level economic and climatic win-win and lose-win scenarios, not only for farmers but also for policymakers and the broader society. This study could inform decision-making and policy development, potentially enhancing economic and climatic performance in combined milk and meat production.
Forfattere
Rasmus Bang Bjørn Gunnar Hansen Mario Guajardo Jon Kristian Sommerseth Ola Flaten Leif Jarle AsheimSammendrag
CONTEXT An important question for farmers is whether to run their farm conventionally or organically. This choice can significantly affect the farm's financial performance and its impact on the environment. OBJECTIVE The primary objective of this study is to compare the profitability of conventional and organic cattle systems and investigate how it is associated with individual farm characteristics, like forage production capacity, forage quality, milk quota, animal housing capacity, and their relative presences. METHOD We employ a whole farm optimization model, customized for Norwegian cattle farming. The primary goal of this model is to maximize the gross margin by optimizing decisions related to land usage and animal inventory while adhering to a set of constraints. We systematically solve more than 200,000 model instances, with varying farm characteristics. RESULTS AND CONCLUSIONS The results can be distilled to the following key points: If forage of good quality is readily available, but the livestock operation cannot be expanded due to animal housing and milk quota restrictions, organic may outcompete conventional farming. Otherwise, gross margin is maximized with conventional farming. These findings emphasize the crucial role of forage production capacity and quality in relation to available milk quota and infrastructure when considering the transition from conventional to organic farming. Extensive sensitivity analyses affirm the robustness of these conclusions. Regional regulatory factors, such as government farm payments, also play a significant role, and influence the optimal farming approach. Additionally, we show that increases in organic price premiums can markedly impact the competitiveness of organic farming, even in a system where government payments make out a significant part of the farm revenue. SIGNIFICANCE The model can support farmers to make informed decisions about converting to organic or conventional farming. It can also be used by policymakers to determine the level of support required to make it worthwhile for different types of farms to convert. We also show that existing government payment schemes give rise to regional differences in the incentives for organic farming in Norway. To ensure equal incentives for organic farming across the country, the organic payments would have to be regionally adjusted, in line with the other already regionally dependent government payments. This insight may be of significant interest to policymakers and other stakeholders.
Sammendrag
We address the question of nature-culture synergies in protected mountain landscapes with a specific focus on the Norwegian National Park of Hardangervidda. Fragile and complex ecosystems developed from long-lasting socio-ecological grazing processes that started approximately 4000 years ago in Scandinavia are facing manifold environmental challenges and societal issues that endanger both natural and cultural heritages. Our goals are to clarify the nature-culture synergies and relationships and investigate holistic management and preservation of natural and cultural values. Our results highlight an urgent need to develop holistic conservation frameworks and methodologies for protected landscapes that integrate cultural and natural heritages and enhance the potential of local communities to protect threatened semi-natural environments and experienced-based knowledge for the future.
Forfattere
Ritter Atoundem Guimapi Berit Nordskog Anne-Grete Roer Hjelkrem Ingeborg Klingen Ghislain Tchoromi Tepa-Yotto Manuele Tamò Karl ThunesSammendrag
The fall armyworm, Spodoptera frugiperda, situation in Africa remains a priority threat despite significant efforts made since the first outbreaks in 2016 to control the pest and thereby reduce yield losses. Field surveys in Benin and Mali reported that approximately one-week post-emergence of maize plants, the presence of fall armyworm (egg/neonates) could be observed in the field. Scouting for fall armyworm eggs and neonates is, however, difficult and time consuming. In this study, we therefore hypothesized that the optimum timeframe for the fall armyworm female arriving to lay eggs in sown maize fields could be predicted. We did this by back-calculating from interval censored data of egg and neonates collected in emerging maize seedlings at young leaf developmental stage. Early time of ovipositing fall armyworm after sowing was recorded in field experiments. By using temperature-based models to predict phenological development for maize and fall armyworm, combined with analytical approaches for time-to-event data with censored status, we estimated that about 210 accumulated Degree Days (DD) is needed for early detection of neonate larvae in the field. This work is meant to provide new insights on timely pest detection and to guide for precise timing of control measures.
Forfattere
Joel Abbey David Percival Laura Elina Jaakola Samuel K. AsieduSammendrag
Botrytis blossom blight disease is one of the major challenges to wild blueberry production with annual losses frequently exceeding 20%. In this study, the effect of different fungicide treatments on Botrytis blight development and yield, as well as the mobility and persistence of these fungicides within flower tissues, and fruit of wild blueberries were evaluated under field conditions. This multi-year trial examined five different fungicides (Switch®, Luna Tranquility®, Merivon® Xenium, Propulse®, and Miravis® Prime) each one applied twice at 7-10-day interval. Fungicide quantification in the floral and berry tissues was conducted using a modification of the QuEChErs extraction method and analyzed with GC-MS and HPLC-MS. All the treatments except Switch® reduced disease incidence by over 78 % and severity by over 40 %, compared to the control plots. Switch® and Miravis® Prime reduced both incidence and severity by over 64 % compared to the control plots. Luna Tranquility®, Merivon® Xenium, and Propulse® reduced incidence by at least 47 % and severity by 51 % compared to the control plots. Berry yields were higher in Switch®, Luna Tranquility® and Miravis® Prime treated plots with at least a 19% increase in yield compared to the control plots. The mean concentration of all quantified fungicides was higher in the corolla compared to the gynoecium and the androecium sample areas. Fungicides were persistent and concentrations were sufficient to suppress Botrytis cinerea at fruit set (10 days post application) with no residue detected in harvested berries, except prothioconazole-desthio.
Forfattere
Katherine Ann Gredvig Nielsen Magne Nordang Skårn Venche Talgø Martin Pettersson Inger Sundheim Fløistad Gunn Strømeng May Bente Brurberg Arne StensvandSammendrag
Gray mold, caused by Botrytis spp., is a serious problem in Norway spruce seedling production in forest nurseries. From 2013 to 2019, 125 isolates of Botrytis were obtained from eight forest nurseries in Norway: 53 from Norway spruce seedlings, 16 from indoor air, 52 from indoor surfaces, and four from weeds growing close to seedlings. The majority of isolates were identified as B. cinerea, and over 60% of these were characterized as Botrytis group S. B. pseudocinerea isolates were obtained along with isolates with DNA sequence similarities to B. prunorum. Fungicide resistance was assessed with a mycelial growth assay, and resistance was found for the following: boscalid (8.8%), fenhexamid (33.6%), fludioxonil (17.6%), pyraclostrobin (36.0%), pyrimethanil (13.6%), and thiophanate-methyl (50.4%). Many isolates (38.4%) were resistant to two to six different fungicides. A selection of isolates was analyzed for the presence of known resistance-conferring mutations in the cytb, erg27, mrr1, sdhB, and tubA genes, and mutations leading to G143A, F412S, ΔL497, H272R, and E198A/F200Y were detected, respectively. Detection of fungicide resistance in Botrytis from Norway spruce and forest nursery facilities reinforces the necessity of employing resistance management strategies to improve control and delay development of fungicide resistance in the gray mold pathogens.
Sammendrag
Extended Multiplicative Signal Correction (EMSC) is a multivariate linear modelling technique for multi-channel measurements that can identify and correct for different types of systematic variation patterns, known or unknown. It is typically used for pre-processing to separate light absorbance spectra, obtained by diffuse reflectance of intact samples, into three main sources of variation: additive variations due to chemical composition (≈Beer's law), mixed multiplicative and additive variations due to physical light scattering (≈Lambert's law) and more or less random measurement noise. The present work evaluates the use of EMSC to pre-process near infrared spectra obtained by hyperspectral imaging of Scots pine sapwood, inoculated with two different basidiomycete fungi and at various degradation stages. The spectral changes due to fungal decay and resulting mass loss are assessed by interpretation of the EMSC parameters and the partial least squares regression (PLSR) results. Including a cellulose (analyte) or bound water (interferent) spectral profile in the EMSC pre-processing model generally improves the predictive performance of the PLS modelling, but it can also make it worse. The inclusion of the additional polynomial baselines does not necessarily lead to a better separation of the physical and chemical effects present in the spectra. The estimated EMSC parameters provide insight into the differences in decay mechanisms. A detailed analysis of the EMSC results highlights advantages and disadvantages of using a complex pre-processing model.
Sammendrag
Climate change is and will continue to alter plant responses to their environment. This is especially prominent concerning the adaptive tracking in reproductive phenology. For wind pollinated plants, this will substantially influence their pollen seasonality, yet there are gaps in knowledge about how environmental variation influences pollen seasonality. To investigate this, we monitored daily atmospheric pollen concentrations of seven pollen types from ecologically, economically and allergenically important plants (alder, hazel, willow, birch, pine, grass and mugwort) in twelve Norwegian locations spanning the entire country for up to 28 years. Six daily meteorological variables (maximum temperature, precipitation, wind speed, relative humidity, solar radiation and atmospheric pressure) was obtained from the MET Nordic dataset with full data cover. The pollen seasonality was then modelled using four spatial, three temporal and the six meteorological variables in a generalized linear model approach with a negative binomial distribution to investigate how each variable group thematically and individually contribute to variation in pollen seasonality. We found that the full models explained the most variation, ranging from R2 = 20.3 % to 59.5 %. The models were also highly accurate, being able to predict 54.5 % to 99.1 % of daily pollen concentrations to within 20.1 pollen grains/m3. Overall, the temporal variables were able to explain more variation than spatial and meteorological variables for most pollen types. Month, altitude and maximum temperature were the most important single variables for each category. The importance of each variable could be traced back to their individual effects of reproductive phenology, plant metabolism, species distributions and pollen release processes. We further emphasise the importance of source maps and atmospheric regional transport models in further model improvements. By understanding the relevance of environmental variation to pollen seasonality we can make better predictions regarding the consequences of climate change on plant populations.
Sammendrag
Monitoring surface albedo at a fine spatial resolution in forests can enrich process understanding and benefit ecosystem modeling and climate-oriented forest management. Direct estimation of surface albedo using 10 m reflectance imagery from Sentinel-2 is a promising research avenue to this extent, although questions remain regarding the representativeness of the underlying model of surface reflectance anisotropy originating from coarser-resolution imagery (e.g., MODIS). Here, using Fennoscandia (Norway, Sweden, Finland) as a case region, we test the hypothesis that systematic stratification of the forested landscape into similar species compositions and physical structures prior to the step of carrying out angular bin regressions can lead to improved albedo estimation accuracy of direct estimation algorithms. We find that such stratification does not lead to statistically meaningful improvement over stratification based on conventional land cover classification, suggesting that factors other than forest structure (e.g., soils, understory vegetation) may be equally important in explaining within-forest variations in surface reflectance anisotropy. Nevertheless, for Sentinel-2-based direct estimation based on conventional forest classification, we document total-sky surface albedo errors (RMSE) during snow-free and snow-covered conditions of 0.015 (15 %) and 0.037 (21 %), respectively, which align with those of the coarser spatial resolution products in cur