Biografi

Jeg leder Avdeling skadedyr og ugras i skog-, jord- og hagebruk og har 20 års erfaring som prosjektleder og  13 år som leder av avdelinger/ seksjoner ved NIBIO. Min forskningsvisjon er å utvikle fremtidens “best of” Integrerte Plantevern som vil føre til en bærekraftig matproduksjon gjennom en effektiv bekjempelse av skadegjørere og minimal bruk av syntetiske plantevernmidler.

Mine mål er derfor å:

  1. Utvikle kunnskap om samspill mellom planter, skade- og nytteorganismer som kan brukes i nye og innovative plantevernstrategier
  2. Utvikle nye og effektive biokontroll verktøy
  3. Kombinere  ny teknologi med biologisk kontroll for mer presise, effektive og økonomisk bærekraftige plantevernstrategier
  4. Formidle kunnskap til næring, forvaltning  og allmennheten som vil være med på å fremme bruken og tilgangen til biologiske kontrollmetoder som viktige verktøy i Integrert Plantevern.

Hovedfokuset for min forskning er integrert plantevern og biologisk bekjempelse av skadedyr. Mitt spesialfelt er insektpatologi og samspillet mellom insekt- og middpatogene sopp med planter skade- og nyttedyr og hvordan dette kan brukes i mikrobiologisk bekjempelse av skadedyr. Jeg jobber med begge hovedgruppene av insekt- og middpatogene sopp som hører til Putesoppene (Hypocreales) og Insektmuggsoppene (Entomophtoromycota).

Les mer
Til dokument

Sammendrag

Background The stink bugs, Nezara viridula L. and Piezodorus guildinii Westwood (Hemiptera: Pentatomidae) are the most important and widespread species of polyphagous stink bugs in the tropical and subtropical regions of Latin America, which affect the quality and yield of the common bean (Phaseolus vulgaris L.). The use of synthetic chemical insecticides is the major control strategy to manage stink bugs in common beans and alternatives are needed. In this study, mortality and median Lethal Time (LT50) of two Cuban isolates of the entomopathogenic fungus Beauveria bassiana (18 S-O-R and 96 P-O-E), as well as one commercial Cuban isolate (Bb-18), at a concentration of 1 × 108 conidia/ml were evaluated. These evaluations were conducted against both stink bug species using Petri dish bioassays and a semi-field experiment in common beans. Results In Petri dish bioassays, the isolates 18 S-O-R and 96 P-O-E caused 100% mortality of both N. viridula and P. guildinii. This was significantly higher than for isolate Bb-18, which caused 86.3% N. viridula and 81.3% P. guildinii mortality. In the semi-field experiment, when pooling both stink bug species, total mortality after 14 days was 91.3% for 18 S-O-R, 80.0% for 96 P-O-E and 73.8% for Bb-18 isolates. LT50 value for isolate 18 S-O-R tested under laboratory conditions was 6.04 ± 0.18 days for N. viridula and 5.32 ± 0.14 days for P. guildinii at the same concentration of 1 × 108 conidia/ml. LT50 value for isolate 18 S-O-R in semi field was 6.79 ± 0.37 days for N. viridula and 7.71 ± 0.32 days for P. guildinii at 1 × 108 conidia/ml. Conclusion The study highlights the potential of B. bassiana 18 S-O-R as a promising candidate for control of stink bugs in common bean under tropical conditions as an alternative to conventional chemical insecticides in integrated pest management (IPM) programs. Moving forward, further research should focus on validating the efficacy under diverse field conditions and integrating application methods into practical IPM approaches. Future use of B. bassiana will enhance sustainability and reduce environmental impacts associated with pesticide use.

Sammendrag

The fall armyworm, Spodoptera frugiperda, situation in Africa remains a priority threat despite significant efforts made since the first outbreaks in 2016 to control the pest and thereby reduce yield losses. Field surveys in Benin and Mali reported that approximately one-week post-emergence of maize plants, the presence of fall armyworm (egg/neonates) could be observed in the field. Scouting for fall armyworm eggs and neonates is, however, difficult and time consuming. In this study, we therefore hypothesized that the optimum timeframe for the fall armyworm female arriving to lay eggs in sown maize fields could be predicted. We did this by back-calculating from interval censored data of egg and neonates collected in emerging maize seedlings at young leaf developmental stage. Early time of ovipositing fall armyworm after sowing was recorded in field experiments. By using temperature-based models to predict phenological development for maize and fall armyworm, combined with analytical approaches for time-to-event data with censored status, we estimated that about 210 accumulated Degree Days (DD) is needed for early detection of neonate larvae in the field. This work is meant to provide new insights on timely pest detection and to guide for precise timing of control measures.

Til dokument

Sammendrag

Pandora neoaphidis is a common entomopathogenic fungus on Sitobion avenae, which is an important aphid pest on cereals in Europe. Pandora neoaphidis is known to cause epizootics (i.e. an unusually high prevalence of infected hosts) and the rapid collapse of aphid populations. We developed a weather-driven mechanistic model of the winter wheat-S. avenae-P. neoaphidis system to simulate the dynamics from spring to harvest. Aphid immigration was fixed at a rate that would lead to a pest outbreak, if not controlled by the fungus. We estimated the biocontrol efficacy by running pair-wise simulations, one with and one without the fungus. Uncertainty in model parameters and variation in weather was included, resulting in a range of simulation outcomes, and a global sensitivity analysis was performed. We identified two key understudied parameters that require more extensive experimental data collection to better assess the fungus biocontrol, namely the fungus transmission efficiency and the decay of cadaver, which defines the time window for possible disease transmission. The parameters with the largest influence on the improvement in yield were the weather, the lethal time of exposed aphids, the fungus transmission efficiency, and the humidity threshold for fungus development, while the fungus inoculum in the chosen range (between 10 and 70% of immigrant aphids carrying the fungus) was less influential. The model suggests that epizootics occurring early, around Zadoks growth stage (GS) 61, would lead to successful biocontrol, while later epizootics (GS 73) were a necessary but insufficient condition for success. These model predictions were based on the prevalence of cadavers only, not of exposed (i.e. infected but yet non-symptomatic) aphids, which in practice would be costly to monitor. The model suggests that practical Integrated Pest Management could thus benefit from including the cadavers prevalence in a monitoring program. We argue for further research to experimentally estimate these cadaver thresholds.