Jutta Kapfer

Forsker

(+47) 991 50 313
jutta.kapfer@nibio.no

Sted
Holt

Besøksadresse
Holtveien 66, 9269 Tromsø

Til dokument

Sammendrag

Det er ikke registrert sammendrag

Til dokument

Sammendrag

Changes in the local flora of mountains are often explained by climate warming, but changes in grazing regimes may also be important. The aim of this study was to evaluate whether the alpine flora on summits in the Tatra Mts, Poland and Slovakia, has changed over the last 100 years, and if the observed changes are better explained by changes in sheep grazing or climate. We resurveyed the flora of 14 mountain summits initially investigated in the years 1878–1948. We used ordination methods to quantify changes in species composition. We tested whether changes in plant species composition could be explained by cessation of grazing and climate change, and whether these factors have influenced shifts in Ellenberg’s plant ecological indicator values and Raunkiaer’s life forms. Changes in alpine flora were greater on lower elevation summits, and lower on summits less accessible for sheep. More accessible summits were associated with a decrease in mean values of plant species’ light ecological indicator values over time, and a concurrent increase in temperature and nitrogen ecological indicator values. No significant relationships were found between accessibility for sheep and changes in Raunkiaer’s life-forms. Greater accessibility for sheep (meaning high historical grazing pressure) led to greater compositional changes of mountain summits compared with summits with low accessibility. Our results suggest that cessation of sheep grazing was the main factor causing changes in the species composition of resurveyed mountain summits in the Tatra Mts, while climate change played a more minor role.

Til dokument

Sammendrag

Mountain vegetation is often considered highly sensitive to climate and land-use changes due to steep environmental gradients determining local plant species composition. In this study we present plant species compositional shifts in the Tatra Mts over the past 90 years and discuss the potential drivers of the changes observed. Using historical vegetation studies of the region from 1927, we resurveyed 76 vegetation plots, recording the vascular flora of each plot using the same methodology as in the original survey. We used an indirect method to quantify plant species compositional shifts and to indicate which environmental gradients could be responsible for these shifts: by calculating shifts in estimated species optima as reflected in shifts in the ecological indicator values of co-occurring species. To find shifts in species composition, focusing on each vegetation type separately, we used ordination (DCA). The species optimum changed significantly for at least one of the tested environmental gradients for 26 of the 95 plant species tested; most of these species changed in terms of the moisture indicator value. We found that the strongest shifts in species composition were in mylonite grassland, snowbed and hygrophilous tall herb communities. Changes in precipitation and increase in temperature were found to most likely drive compositional shifts in vegetation resurveyed. It is likely that the combined effect of climate change and cessation of sheep grazing has driven a species composition shift in granite grasslands communities.

Til dokument

Sammendrag

Successional dynamics in plant community assembly may result from both deterministic and stochastic ecological processes. The relative importance of different ecological processes is expected to vary over the successional sequence, between different plant functional groups, and with the disturbance levels and land-use management regimes of the successional systems. We evaluate the relative importance of stochastic and deterministic processes in bryophyte and vascular plant community assembly after fire in grazed and ungrazed anthropogenic coastal heathlands in Northern Europe. A replicated series of post-fire successions (n = 12) were initiated under grazed and ungrazed conditions, and vegetation data were recorded in permanent plots over 13 years. We used redundancy analysis (RDA) to test for deterministic successional patterns in species composition repeated across the replicate successional series and analyses of co-occurrence to evaluate to what extent species respond synchronously along the successional gradient. Change in species co-occurrences over succession indicates stochastic successional dynamics at the species level (i.e., species equivalence), whereas constancy in co-occurrence indicates deterministic dynamics (successional niche differentiation). The RDA shows high and deterministic vascular plant community compositional change, especially early in succession. Co-occurrence analyses indicate stochastic species-level dynamics the first two years, which then give way to more deterministic replacements. Grazed and ungrazed successions are similar, but the early stage stochasticity is higher in ungrazed areas. Bryophyte communities in ungrazed successions resemble vascular plant communities. In contrast, bryophytes in grazed successions showed consistently high stochasticity and low determinism in both community composition and species co-occurrence. In conclusion, stochastic and individualistic species responses early in succession give way to more niche-driven dynamics in later successional stages. Grazing reduces predictability in both successional trends and species-level dynamics, especially in plant functional groups that are not well adapted to disturbance. bryophytes; burning; Calluna vulgaris; coexistence; conservation management; determinism; disturbance; grazing; heathland; randomization test; stochasticity; vascular plants.

Til dokument

Sammendrag

Methods: In 2009, we resurveyed three plant sociological studies up to 85 years after the first surveys. Vegetation data were recorded from 1m2 non-permanently marked plots, and soil pH was measured. We applied restricted permutation tests to evaluate whether observed changes in vegetation (species richness, occurrence frequency, coverage) and in soil pH were significant and independent of plant community type. We compared species co-occurrences over time to study changes in species composition and to identify the species most likely causing these changes. Results: Total number of species and average number of species per plot has not changed and are 75 and 9, respectively. Occurrence frequency changed significantly for 34% of the 64 species tested (11 species increased, 11 decreased). Species cover decreased significantly for 27% of the species and increased for one species. Observed changes in frequency and cover are not significantly related with species’ functional groups or species affiliated with moist or dry habitats. Polygonum viviparum, Saxifraga cernua and Alopecurus borealis have changed most in co-occurring with other species. Soil pH increased significantly from 6.4 to 6.8. Conclusions: Our results suggest that the strong climatic warming in the High Arctic over the past decades has contributed to significant changes in the vegetation studied on Svalbard over the past 85 years. Internal community re-structuring and the overall stability in species richness may be explained by time-delayed responses of well-established communities, and/or by a limited size of the species pool in the area.

Til dokument

Sammendrag

Habitat loss is one of the primary environmental causes of biodiversity decline across scales; locally to globally. Ecological restoration is acknowledged as an important tool to counteract this negative trend. The semi-natural calcareous sand dune meadows in south-western Norway are known for their high species diversity, much like similar habitats of high conservation value across Europe today. The recent cessation of grazing has caused a decline in several endangered species associated with these habitats due to the advancement of secondary succession. We conducted a long-term restoration experiment in semi-natural dune meadows over 16 years to examine if current trends in biodiversity loss could be reversed and at what time-scale restoration measures take effect. Three treatments were applied; mowing annually, mowing bi-annually, and a control (no mowing). In fields mown annually species richness increased significantly over time. However, the response was slow and significant effects were first seen after year 10. Fields mown bi-annually also showed a similar trend but the response was more variable. Several characteristic meadow species were favoured by annual mowing while they declined in the control fields. Principal component analysis (PCA) revealed a compositional shift, indicating the re-arrangement/-establishment of typical meadow vegetation in the mown sites, contrasting the further successional development in the control. Our results demonstrate the importance of long-term data in supporting good evidence-based management. Annual mowing is effectively restoring this unique habitat, but restoration efforts need to be sustained over many years to show positive effects.

Til dokument

Sammendrag

Background: Resurveying historical vegetation plots has become more and more popular in recent years as it provides a unique opportunity to estimate vegetation and environmental changes over the past decades. Most historical plots, however, are not permanentlymarked and uncertainty in plot location, in addition to observer bias and seasonal bias, may add significant errors to temporal change. These errorsmay havemajor implications for the reliability of studies on long-term environmental change and deserve closer attention of vegetation ecologists. Methods: Vegetation data obtained from the resurveying of non-permanently marked plots are assessed for their potential to study environmental change effects on plant communities and the challenges the use of such data have to meet. We describe the properties of vegetation resurveys, distinguishing basic types of plots according to relocation error, and we highlight the potential of such data types for studying vegetation dynamics and their drivers. Finally, we summarize the challenges and limitations of resurveying non-permanently marked vegetation plots for different purposes in environmental change research. Results and conclusions: Re-sampling error is caused by three main independent sources of error: error caused by plot relocation, observer bias and seasonality bias. For relocation error, vegetation plots can be divided into permanent and non-permanent plots, while the latter are further divided into quasi-permanent (with approximate relocation) and non-traceable (with random relocation within a sampled area) plots. To reduce the inherent sources of error in resurvey data, the following precautions should be followed: (i) resurvey historical vegetation plots whose approximate plot location within a study area is known; (ii) consider all information available from historical studies in order to keep plot relocation errors low; (iii) resurvey at times of the year when vegetation development is comparable to the historical survey to control for seasonal variability in vegetation; (iv) retain a high level of experience of the observers to keep observer bias low; and (v) edit and standardize data sets before analyses.

Sammendrag

Det er ikke registrert sammendrag

Sammendrag

Stadig flere nordmenn bor og jobber i byer og tettsteder. Behovet for nye bygninger er derfor stort, noe som medfører at grønne områder her er under konstant utbyggingspress. Samtidig har slike områder flere viktige funksjoner som ofte oversees i areal- og utbyggingsprosesser.

Til dokument

Sammendrag

Aim Previous research on how climatic niches vary across species ranges has focused on a limited number of species, mostly inv asive, and has not, to date, been very conclusive. Here we assess the degree of niche conservatism between distant populations of native alpine plant species that have been separated for thousands of years. Location European Alps and Fennoscandia. Methods Of the studied pool of 888 terrestr ial vascular plant species occurring in both the Alps and Fennoscandia, we used two complementary approaches to test and quantify climatic-niche shifts for 31 species having strictly disjunct populations and 358 species having either a contiguous or a patchy distribution with distant populations. First, we used species distr i- bution modelling to test for a region effect on each species’ climatic niche. Second, we quantified niche overlap and shifts in niche width (i.e. ecological amplitude) and position (i.e. ecological optimum) within a bi-dimensional climatic space. Results Only one species (3%) of the 31 species with str ictly disjunct populations and 58 species (16%) of the 358 species with distant popula- tions showed a region effect on their climatic niche. Niche overlap was higher for species with strictly disjunct populations than for species with distant populations and highest for arctic–alpine species. Climatic niches were, on average, wider and located towards warmer and wetter conditions in the Alps. Main conclusion Climatic niches seem to be generally conserved between populations that are separated between the Alps and Fennoscandia and have probably been so for 10,000–15,000 years. Therefore, the basic assumption of species distribution models that a species’ climatic niche is constant in space and time – at least on time scales 10 4 years or less – seems to be largely valid for arctic–alpine plants.

Sammendrag

Background & Aim: Land-use regimes and their changes, as well as landscape heterogeneity are key determinants of the distribution and composition of species in cultural landscapes. In European agricultural landscapes, habitat loss due to both abandonment and intensification of agriculture fields are major causes for the decline of species diversity. Landscapes that are diverse in habitats and species are important to maintain basic ecosystem functions and services as, for instance, pollination or habitat preservation. In Norway, semi-natural species-rich habitats, such as agricultural grasslands, often occur in mosaics with forests and crop fields. This research studies key information for design of conservation plans focused on these habitats, addressing how landscape structure and land-use history affect the distribution, richness and composition of species in species-rich grasslands across geographical regions. Material & Methods: We recorded vegetation (species occurrence and cover) in agricultural grasslands with varying intensity and type of use from 569 plots of 8 x 8 m size systematically distributed throughout Norway (from 64 to 78 °N latitude). To identify the most important driving factors of species diversity and composition we explored the combined effects of historic and current land-use and the spatial landscape configuration of nearby land cover types (e.g. minimum distance to or area of neighbouring wetland, forest, cultivated land) taking into account the effects of grazing, elevation, and moisture conditions. Non-metrical multidimensional scaling (NMDS) was applied to identify the most important drivers of species composition. We used Generalized Additive Mixed Models to test the relationship of these drivers with patterns in species richness. Main results & Interpretations: NMDS revealed species composition to be explained most by the distance to surface cultivated land and transportation corridors (r=0.905, p<0.001 and r=-0.982, p<0.001; 1. NMDS axis) as well as shape of the patch in which the vegetation plot is embedded (patch shape) and grazing intensity (r=0.988, p<0.001 and r=-0.952, p<0.001; 2. NMDS axis). Observed patterns in species richness were statistically significantly linked to the combined effects of elevation, grazing intensity, historical land-use, patch shape, distance to transportation corridors and forest, and area of nearest wetland. Our results demonstrate the importance of a variety of factors influencing the species composition and richness in Norwegian grasslands. We found that both the landscape element harbouring the observed plot and also the surrounding landscape structure and intensity of land-use are important determinants of species diversity. The fact that distance to more intensively managed agricultural land is one of the strongest explanatory facts signals how effects of agricultural management practices reaches outside the field itself and into adjacent landscape elements. This suggests that the entire landscape needs to be taken into consideration when management of a particular habitat patch is planned.

Til dokument

Sammendrag

Background: Studies quantifying and comparing the variation and degree of compositional stability of vegetation and what determines this stability are needed to better understand the effects of the projected climate change. Aims: We quantified long-term vegetation changes in different habitats in northern Europe by exploring changes in species co-occurrences and their links to diversity and productivity gradients. Methods: We re-sampled vegetation in 16 arctic, mountain, and mire sites 20 to 90 years after first inventories. A site-specific change in species assemblages (stability) was quantified using species co-occurrences. We tested if the observed changes were significantly greater than would be expected by chance using a randomisation test. Relationships between patterns in vegetation stability and time between surveys, numbers of plots, or species diversity and proxies for productivity were tested using regression analysis. Results: At most sites, changes in species co-occurrences of vascular plants and bryophytes were greater than expected by chance. Observed changes were not found to be related to gradients in productivity or diversity. Conclusions: Changes in species co-occurrences are not strongly linked to diversity or productivity gradients in vegetation, suggesting that other gradients or site-specific factors (e.g. land-use, species interactions) might be more important in controlling recent compositional shifts in vegetation in northern Europe.

Til dokument

Sammendrag

Springs are characterized by consistent thermal and hydrologic conditions, which enable use of spring-inhabiting organisms as sensitive indicators of biogeochemical changes in their catchments. We hypothesized that bryophytes would show a stronger response than vascular plants to changes in spring water quality because submerged bryophytes do not take up compounds from the soil. We analyzed species responses to interannual changes in spring water quality (discharge, water temperature, electrical conductivity, and pH) in 57 forest springs over 4 consecutive years. We calculated interannual turnover in species composition for bryophytes and vascular plants with the Bray–Curtis dissimilarity index. We applied regression analysis to test interannual changes in species composition of the taxonomic groups over time, and we used 2-sided t-tests to compare year-to-year changes in species composition between bryophytes and vascular plants. We used boosted regression tree (BRT) models to quantify the relative importance of different physicochemical variables and Pearson linear correlation to quantify short-term changes in vegetation relative to changes in spring-water pH. For both groups, interannual changes in species composition were significantly positively related to time scale. Bryophytes did not show a significantly stronger response than vascular plants to interannual changes in the environment. Alterations in pH and conductivity explained most of the observed interannual changes in species composition of both groups, whereas changes in water temperature and discharge were less important. However, responses of single species to environmental change may be delayed, resulting in inertia at the community and ecosystem scales. Hence, longer time periods need to be considered for a better understanding of response times of the vegetation of European forest springs to changes in spring water quality.

Sammendrag

Phytosociological studies can be an important tool to detect temporal vegetation changes in response to global climate change. In this study, we present the results of a resurvey of a plot-based phytosociological study from Sikkilsdalen, central Norway, originally executed between 1922 and 1932. By using a detailed phytosociological study we are able to investigate several aspects of elevational shifts in species ranges. Here we tested for upward and downward shifts in observed upper and lower distribution limits of species, as well as changes in species optima along an elevational gradient, and related the observed range shifts to species traits that could explain the observed trends. More species shifted upwards than downwards, independently of whether we were investigating shifts in species\" upper or lower distribution ranges or in species optima. However, shifts in species upper range margins changed independently of their lower range margins. Linking different species traits to the magnitude of shifts we found that species with a higher preference for prolonged snow cover shifted upwards more in their upper elevational limits and in their optima than species that prefer a shorter snow cover, whereas no species traits were correlated with the magnitude of changes in lower limits. The observed change in species ranges concord both with studies on other mountains in the region and with studies from other alpine areas. Furthermore, our study indicates that different factors are influencing species ranges at the upper and lower range limits. Increased precipitation rates and increased temperatures are considered the most important factors for the observed changes, probably mainly through altering the pattern in snow cover dynamics in the area.

Sammendrag

1. In the face of a rapidly changing environment, long-term studies provide important insights into patterns of vegetation and processes of change, but long-term studies are rare for many ecosystems.2. We studied recent vegetation changes at a fine scale in a Sphagnum-dominated bog in south Sweden by resurveying part of the bog 54 years after the original phytosociological survey. We used an indirect approach to identify changes in vegetation composition in relation to environment because of a lack of permanent sampling units. By applying a weighted averaging technique, we calculated relative changes in species optimum values for different environmental gradients as represented by indicator values for light, temperature, pH, moisture and nutrients.3. Species composition of the mire vegetation has changed significantly over the past five decades, as indicated by significant changes in species frequencies and species optima for the gradients examined. Species with lower indicator values for moisture and light and higher indicator values for nutrients have become more frequent on the mire. In particular, species of trees and dwarf shrubs increased in frequency, whereas typical mire species decreased (e.g. Trichophorum cespitosum (L.) Hartm.) or disappeared fromthe study site (e.g. Scheuchzeria palustris L.).4. Synthesis. Composition of the mire vegetation is found to be dynamic at different temporal and spatial scales. Increased air temperature and nutrient availability in south Sweden over the past few decades may have augmented productivity (e.g. tree growth), resulting in drier and shadier conditions for several species. This study successfully demonstrated the applicability of an indirect approach for detecting long-term vegetation change at a fine scale. This approach is an effective way of using historic and modern phytosociological data sets to detect vegetation and environmental change through time.

Sammendrag

Understanding the driving forces affecting species occurrences is a prerequisite for determining the indicator suitability of crenic plants. We analysed 18 environmental variables in a two-step approach, evaluating their ability to explain the species composition of 222 springs on five siliceous mountain ranges, in central Germany and north-west Czech Republic (49.9°–50.8°N, 10.6°–12.8°E). First, we identified the significant environmental variables in three subsets of spatial, hydrophysical and hydrochemical variables using a forward-selection procedure. We then performed a partial canonical correspondence analysis (pCCA) to estimate the influence of each subset alone, as well as in combinations. We also used a multiple response permutation procedure (MRPP) to compare the five regions with respect to the dissimilarity of their vegetation composition and environmental variables. Hydrochemical factors played a fundamental role in determining the plant community of the investigated springs. Spatial factors, in particular altitude, were correlated with the hydrochemical factors, but were less important. Hydrophysical factors played only a marginal role. More precisely, species occurrence was mainly driven by a gradient of nutrient availability, which in turn reflected the acidity status. This gradient was primarily represented by high Al, Cd, and Mn concentrations in acidic crenic waters, high Ca and Mg concentrations were encountered in circumneutral springs. By comparing the five regions we could show that there are spatial patterns in the vegetation of springs, which provide valuable ecological information on the water quality. We therefore suggest that biomonitoring approaches to vegetation are suitable for revealing the acidity status of springs and their forested catchments.