Til dokument

Sammendrag

This study evaluated the effects of bio-based carbon materials on methane production by anaerobic digestion. The results showed that biochar and hydrochar can promote cumulative methane yield by 15% to 29%. However, there was no statistical significance (p > 0.05) between hydrochar and biochar produced at different temperature on methane production. 16S rRNA gene sequencing and bioinformatics analysis showed that biochar and hydrochar enriched microorganism that might participate in direct interspecies electron transfer (DIET) such as Pseudomonadaceae, Bacillaceae, and Clostridiaceae. The the surface properties of the modified biochar were characterized with BET, Raman, FTIR and XPS. Bio-based carbon materials with uniform dispersion provided a stable environment for the DIET of microorganisms and electrons are transferred through aromatic functional groups on the surface of materials. This study reveals bio-based carbon materials surface properties on methane production in anaerobic digestion and provides a new approach to recycling spent coffee grounds.

Til dokument

Sammendrag

Syngas from pyrolysis/gasification process is a mixture of CO, CO2 and H2, which could be converted to CH4, so called syngas biomethanation. Its development is obstructed due to the low productivity and CO inhibition. The aim of this study was to demonstrate the feasibility of using syngas as the only carbon source containing high CO concentration (40%) for biomethanation. Lab-scale thermophilic bioreactor inoculated with anaerobic sludge was operated continuously for over 900 h and the shift of microbial structure were investigated. Results showed that thermophilic condition was suitable for syngas biomethanation and the microbes could adapt to high CO concentration. Higher processing capacity of 12.6 m3/m3/d was found and volumetric methane yield of 2.97 m3/m3/d was observed. These findings could strengthen the theoretical basis of syngas biomethanation and support its industrialization in the future.

Til dokument

Sammendrag

In-situ hydrogen biomethanation is a promising technology to upgrade biogas. The efficiency of biomethanation relies on various parameters, e.g. gas supplement, temperature and hydrogenotrophic methanogens. Therefore, it is important to investigate the characteristics of in-situ hydrogen biomethanation under different conditions. In this study, two experiments (lasted for 91 days and 105 days) were carried out to investigate the impacts of feeding gas and operating conditions on performances of reactors and microorganisms. During the whole experiment, no obvious fluctuation of pH and limitation of gas–liquid mass transfer were found. Results showed that the hydrogenotrophic methanogenesis performed better at thermophilic condition, while the dominant archaea genera at mesophilic and thermophilic temperature was determined to be Methanobacterium and Methanothermobacter, respectively. The highest CH4 content (greater than 90%) was obtained when H2 and CO2 was feeding at ratio of 4:1 and Methanothermobacter was dominant. These findings can provide useful information for promoting hydrogen biomethanation.

Til dokument

Sammendrag

With the development of the world economy and society, the living standards of residents have been improved, along with a large amount of food waste and carbon dioxide (CO2) emissions. In the face of global warming and energy shortages, food waste can be used as high-value bio-energy raw materials which is also an effective way to reduce CO2 emissions. Therefore, this paper proposes a novel anaerobic digestion and CO2 emissions efficiency analysis based on a Slacks-Based Measure integrating Data Envelopment Analysis (SBM-DEA) model to evaluate and optimize the process structure of anaerobic treatment of food waste. The total feed volume and the discharge volume of liquid digestate are taken as inputs, and the total methane (CH4) production volume is taken as the desirable output and CO2 emissions are regarded as the undesirable output to build the biogas production and CO2 emissions evaluation model during the anaerobic digestion process. Finally, the proposed method is used in the actual anaerobic digestion process. The results show that the overall efficiency values in January, April, May, and June in 2020 are higher than those in other months. At the same time, due to the optimal allocation of slack variables of inputs and undesirable outputs, the efficiency values of other inefficient anaerobic digestion days can be improved.