Venche Talgø

Forsker

Divisjon for bioteknologi og plantehelse

Soppsjukdommer

(+47) 920 69 664
venche.talgo@nibio.no

Sted
Ås - Bygg H7

Besøksadresse
Høgskoleveien 7, 1433 Ås

Til dokument

Sammendrag

Introduction and purpose: The ability of apple rootstocks to become infected by Neonectria ditissima, the cause of European canker, was studied over two years. Materials and methods: Rootstocks B9 and M9 with a size suitable for grafting (6-10 mm stem diameter, termed rootstocks), and smaller sized rootstocks (<5 mm stem diameter, termed transplants) of B9, M9, M26, MM106 and Antonovka were inoculated with N. ditissima at different times, either with contaminated map pins or with spore suspensions. In addition, the rootstocks were either defeathered (side shoots removed), topped (top shoot headed) or both, to create wounds that would normally occur during propagation, while wounds on transplants were made by removing leaves. Results and discussion: One month after inoculation, slightly sunken canker lesions had developed around the inoculation points of the map pins or wounds. No lesions developed on the non-inoculated controls. Map pin inoculation resulted in 30% to 89% infection and spore suspension sprayed on wounds from 5% to 45% infection. When the cankered areas were split open, brown lesions with necrotic tissue due to infection by N. ditissima appeared. The transplants of M9, M26 and MM106 inoculated with contaminated map pins in 2014 developed necrosis on 40% to 67% of the plants, but there were no differences in the incidence or severity among the different types. On the transplants of B9, Antonovka and M9 inoculated in 2015, there was more necrosis on B9 (42%) than on Antonovka (11%) and more sporulating lesions on B9 (29%) than on M9 (9%) or on Antonovka (4%). Conclusion: It can be concluded that rootstocks used for apple trees may become infected by N. ditissima, and wounds should thus be protected during propagation.

Til dokument

Sammendrag

Field trials of Abies lasiocarpa were undertaken with the aim of assessing the potential for Christmas tree production in Denmark. Twenty-six provenances originating from Alaska to New Mexico were tested. Damage by the insect Adelges piceae and the fungus Neonectria neomacrospora was recorded for the first time 8 and 12 years after the initial planting. Damage from N. neomacrospora increased rapidly in the period 12–15 years after planting. Trees from the northern provenances and humid climates exhibited less damage than those from southern ones. Previous attack by A. piceae had a minor effect on N. neomacrospora infection. Greenhouse tests showed that detached shoots from healthy Abies lasiocarpa can be used to rank provenances for resistance to N. neomacrospora, but results varied according to host subspecies.

Til dokument

Sammendrag

The impact of Delphinella shoot blight (Delphinella abietis) and Grovesiella canker (Grovesiella abieticola) on subalpine (Abies lasiocarpa) and corkbark fir (A. lasiocarpa var. arizonica) in a provenance trial in Idaho (ID) was evaluated in 2013. Both pathogens were previously reported from North America on fir species. D. abietis had been found on subalpine fir in USA, but not in ID, and G. abieticola on grand fir (Abies grandis) in ID, but not on subalpine or corkbark fir. D. abietis kills current-year needles and in severe cases buds and shoots, and G. abieticola results in dead shoots and branches and can eventually kill whole trees. Significant differences between provenances in susceptibility to D. abietis and G. abieticola were observed in the provenance trial in ID. In general, subalpine fir was more susceptible to both diseases than corkbark fir. In 2013, D. abietis was also found on subalpine fir in the Puget Sound area of Washington State and G. abieticola was seen on white fir (Abies concolor), but neither disease was detected in native stands of subalpine fir in Washington State. Morphological features of both fungi were described from samples collected in the provenance trial in ID in May 2016.

Sammendrag

Fire blight, caused by Erwinia amylovora, was detected for the first time in Norway in 1986. It was a limited outbreak on the south-western coast, only on ornamentals, and particularly on Cotoneaster spp. An action group handling the eradication and containment of the disease was quickly established. Comprehensive statutory powers and resources were given by the government to do surveys and eradicate diseased or symptomless but highly susceptible plant species from contaminated areas. These activities have likely restricted fire blight to the western and southern coastal areas. Eastern and northern parts of Norway are considered free from fire blight. The disease has not been observed in important fruit-growing areas. Uncontrolled movement of beehives from areas with fire blight to areas free from the disease has contributed to its introduction to new areas. From 1969 to 2016 import of most host plants of E. amylovora from countries with fire blight was prohibited. A yearly program for annual surveys in parts of the country with commercial fruit-growing and nurseries, using digital maps on internet connected tablets with GPS and software for in situ registrations, proved to be an efficient method for discovering new outbreaks at an early stage, and to start eradication and thus limit further spread.

Sammendrag

Fleire soppar kan angripa kongler av gran (Picea spp.) og føra til dårleg spiring av frø. Frøsmitte kan også overførast til planter og gjera skade seinare i omløpet, både i planteskular og i produksjonsfelt til skog og juletre.

Sammendrag

Production of inoculum of Colletotrichum acutatum from both previously infected and overwintered tissue, as well as newly developed plant tissue of sour cherry (Prunus cerasus), was studied in southern Norway. Plant parts were sampled from commercial, private, or research orchards, and incubated for 2 to 14 days (time depended on tissue type) in saturated air at 20°C. In early spring, abundant sporulation was found on scales of overwintered buds and shoots. A mean of 35% infected buds in four cultivars was observed, with a maximum of 72% of the buds infected in one of the samples. Over 3 years, the seasonal production of overwintered fruit and peduncles of cv. Fanal infected the previous year was investigated. In all three years, the infected plant material was placed in the trees throughout the winter and the following growing season; in two of the years, fruit and peduncles were also placed on the ground in the autumn or the following spring. Old fruit and peduncles formed conidia throughout the season, with a peak in May and June. Spore numbers declined over the season, but the decline was more rapid for plant material on the ground than in the trees. On average over 2 years, 68.7, 24.0, or 7.3% of the inoculum came from fruit placed in the trees, placed on the ground in spring, or placed on the ground the preceding autumn, respectively. The number of fruit and peduncles attached to the trees in a planting of cv. Hardangerkirsebær was followed from February to July one year, and although there was a decline over time, fruit and/or their peduncles were still attached in substantial numbers in July, thus illustrating their potential as sources of inoculum. In observations over 2 years in a heavily infected orchard of cv. Stevnsbær, 75 and 47% of flowers and newly emerged fruit, respectively, were infected. Artificially inoculated flowers and fruit produced conidia until harvest, with a peak in mid-July. It may be concluded that previously infected and overwintered, as well as newly emerged tissue of sour cherry, may serve as sources of inoculum of C. acutatum throughout the growing season.

Til dokument

Sammendrag

On September 6th – 11th in 2015, the Norwegian Institute of Bioeconomy Research (NIBIO) organized The 12th International Christmas Tree Research and Extension Conference (CTREC) at Honne, Norway. Around 40 participants from Australia, Austria, Canada, Denmark, France, Greece, Hungary, Iceland, Norway, UK, and USA gathered to share skills and recent research related to Christmas tree production and marketing. Nearly 50 presentations (oral and poster) were given during the conference covering the following topics; Breeding & genetic, Insects, Tree health, Physiology, Growth conditions & integrated pest management, Postharvest, and Market & economy. Abstracts, extended abstracts or papers from all presentations are available in this proceedings.

Til dokument

Sammendrag

The fungus Neonectria neomacrospora has recently caused an epidemic outbreak in conifer species within the genus Abies in Denmark and Norway. Christmas tree producers in Europe and North America rely, to a large extent, on Abies species. The damage caused by N. neomacrospora, including dead shoot tips, red flagging of branches and potentially dead trees, have therefore caused concern about reduced quality and loss of trees, and thereby of revenue. Field observations of natural infection of 39 taxa, from 32 species, within the genus Abies in the Hørsholm Arboretum, Denmark, were evaluated; significant differences were seen between taxa, that is, species, and between some species and their subspecies. The Greek fir, Abies cephalonica, was the only species without damage. An inoculation experiment on detached twigs with mycelium plugs from a N. neomacrospora culture showed that all species could be infected. The damage observed in the inoculation experiment could explain 30% of the variation in the field observations based on species mean values. The epidemic outbreak and the high number of species susceptible to this fungus indicate that N. neomacrospora requires attention in the cultivation and conservation of Abies species.

Til dokument

Sammendrag

Delphinella shoot blight (Delphinella abietis) attacks true firs (Abies spp.) in Europe and North America. Especially subalpine fir (A. lasiocarpa), one of the main Christmas tree species in Norway, is prone to the disease. The fungus kills current year needles, and in severe cases entire shoots. Dead needles become covered with black fruiting bodies, both pycnidia and pseudothecia. Delphinella shoot blight has mainly been a problem in humid, coastal regions in the northwestern part of Southern Norway, but, probably due to higher precipitation in inland regions during recent years, heavy attacks were found in 2011 in a field trial with 76 provenances of subalpine fir in Southeastern Norway. However, the amount of precipitation seemed less important once the disease had established in the field. Significant differences in susceptibility between provenances were observed. In general, the more bluish the foliage was, the healthier the trees appeared. The analysis of provenance means indicated that, at least for the southern range, the disease ratings were correlated with foliage color. This study also includes isolation, identification, a pathogenicity test, a seed test and electron microscopy of the wax layer on the needles. The fungus was identified based on the morphology of spores and by sequencing the Internal Transcribed Spacer (ITS) regions of the ribosomal DNA. Koch’s postulates were fulfilled. The fungus was found present on newly harvested seeds and may therefore spread via international seed trade. When comparing the wax layers on green and blue needles, those of the latter were significantly thicker, a factor that may be involved in disease resistance.

Sammendrag

Pseudomonas syringae was isolated from symptomatous goat willow trees (and some other tree species) from different locations in Norway. The isolates were characterized by different methods and their pathogenicity proven by bioassays. We conclude that the pathogen represents a threat to the health of goat willow and other host plants in Norwegian natural environment.

Sammendrag

De siste ti årene er det i Norge, som i mange andre land, observert store skader på trær og andre planter både i grøntanlegg og naturområder etter angrep av planteskadegjørere innen slekten Phytophthora. Spredningen og sjukdomsomfanget viser med all tydelighet at arter av Phytophthora har et stort skadepotensiale og må tas på største alvor.

Til dokument

Sammendrag

Det er ikke registrert sammendrag

Sammendrag

In 2008, an epidemic caused by a new Neonectria sp. was discovered on white fir (Abies concolor) in several counties in southern Norway [1]. Later the pathogen was also found on other fir species in Norway and Denmark [2]. Typical symptoms and signs were dead shoots, flagging (dead branches), canker wounds, heavy resin flow, and occasionally red fruiting bodies (perithecia). Pathogenicity tests on several Abies spp. proved the fungus to be very aggressive, which corresponds well with observations of mortality of white fir and subalpine fir (A. lasiocarpa) from different age classes under field conditions. Sequencing of the internal transcribed regions (ITS) of the ribosomal DNA showed that this Neonectria sp. was most similar to N. ditissima (only 5 bp different from isolates in the GenBank), a common pathogen worldwide on broad leaf trees. The ITS sequences were very different (> 20 bp) from N. fuckeliana, a well-known fungus on Norway spruce in Scandinavia and other parts of the world, especially in the northern hemisphere. In 2011, the new Neonectria species was found on diseased trees in a Danish nordmann fir (Abies nordmanniana) seed orchard. Resin flow was seen from mature cones, and tests revealed that the seeds were infected by the Neonectria sp.

Sammendrag

I Bergen, Haugesund, Stavanger og Larvik har vi funne typiske Phytophthora-symptom på bøk (Fagus sylvatica). Ordet Phytophthora tyder planteøydeleggjar (phyto =plante, phthora=øydeleggjar) og skadeorganismar i denne slekta kan ta livet av store tre på relativt kort tid. På verdsbasis spreier Phytophthora-artar seg stadig til nye lokalitetar og vertplanter. Dette skuldast i stor grad internasjonal handel med planter. Det fins over 100 ulike Phytophthora-artar, og mange av dei er svært aggressive og har eit vidt vertplantespekter. Generelt trivest dei best i fuktig jord og vatn, men dei har også tjukkvegga sporar (oosporar) som kan overleva i årevis i jord under ugunstige tilhøve for patogenet. Så langt har vi isolert P. cambivora og P. plurivora frå bøk i Noreg. Begge artane er kjende som skadegjerarar på bøk i parkar og skogplantasjar i mange land i Europa og USA og vert sett på som ein stor trus¬sel mot naturområde.

Sammendrag

Norsk juletreproduksjon har de siste årene hatt stor vekst, og det har spesielt blitt satset på edelgran (Abies spp.). Dette har ført til uforutsette sykdomsproblemer. Blant annet gjør soppen Sydowia polyspora, som også har vist seg å være frøoverført, stor skade. Vi har i den forbindelse forsøkt å finne effektive metoder for å eliminere frøsmitten samtidig som spireevnen opprettholdes.

Sammendrag

Dyrking av juletrær har økt mye i omfang i Norge de to siste ti-årene. En økende andel av juletrærne som høstes i Norge kommer fra egne dyrkingsfelt. Det gir mulighet for tett oppfølging med nødvendige dyrkingsmessige tiltak for å oppnå best mulig kvalitet og derved et høyt juletreutbytte.

Sammendrag

Stadig fleire vel edelgran som juletre, men vanlig gran har framleis ein viktig posisjon i mange norske heimar til jul. Spesielt på Austlandet og i Trøndelag vert det framleis dyrka mykje gran til juletre, medan produksjonen på Vestlandet er meir dominert av edelgran. Vi tek her for oss nokre utfordringar som omhandlar juletreproduksjon av gran.

Sammendrag

Danmark vart det i vekstsesongen 2011 funne til dels store skadar på fjelledelgran på grunn av ein kreftsopp i slekta Neonectria. Soppen er truleg ein ny art og har tidlegare berre vore rapportert frå Noreg. Typiske symptom var visne greiner og sterk kvaeutflod. Nokre tre hadde dauda heilt ned. Smitteforsøk stadfesta at soppen var svært aggressiv.