Sammendrag

Sclerotinia stem rot (SSR) is the most important disease of oilseed Brassica crops in Norway. Fungicide applications should be aligned with the actual need for control, but the SSR prediction models used lack accuracy. We have studied the importance of precipitation, and the role of petal and leaf infection for SSR incidence by using data from Norwegian field and trap plant trials over several years. In the trials, SSR incidence ranged from 0 to 65%. Given an infection threshold of 25% SSR, regression and Receiver Operating Characteristics (ROC) analysis were used to evaluate different precipitation thresholds. The sum of precipitation two weeks before and during flowering appeared to be a poor predictor for SSR infection in our field and trap plant trials (P = 0.24, P = 0.11, respectively). Leaves from three levels (leaf one, three, five), and petals were collected at three to four different times during flowering from nine field sites over two years and tested for SSR infection with real-time PCR. Percentage total leaf and petal infection explained 57 and 45% of variation in SSR incidence, respectively. Examining the different leaves and petals separately, infection of leaf three sampled at full flowering showed the highest explanation of variation in later SSR incidence (R2 = 65%, P < 0.001). ROC analysis showed that given an infection threshold of 45%, both petal and leaf infection recommended spraying when spraying was actually needed. Combining information on petal and leaf infection during flowering with relevant microclimate factors in the canopy, instead of the sum of precipitation might improve prediction accuracy for SSR.

Til dokument

Sammendrag

During August 2013, white-grayish lesions, typical of Sclerotinia stem rot, had developed around leaf axils on the stems of turnip rape ‘Pepita’ in a field at the NIBIO research station Apelsvoll in Oppland County, Norway. Sclerotia were collected from inside infected turnip rape stubble and from harvested seeds, surface sterilized, bisected, and placed onto potato dextrose agar (PDA). Following 1 to 2 days incubation at 20°C, fast-growing white mycelium characteristic of Sclerotinia was observed, and within 5 to 7 days, new sclerotia had started to develop. Sclerotia size and growing pattern although variable was characteristic of S. sclerotiorum. DNA extraction, PCR amplification, and sequencing of the ITS regions of the rDNA was then carried out for 20 isolates. BLASTn analysis of 475 bp amplicons showed that 15 isolates were S. sclerotiorum, while five were identified as S. subarctica (previously called Sclerotinia sp 1; Holst-Jensen et al. 1998; Winton et al. 2006, 2007), with 100% identity to a U.K. S. subarctica isolate (Clarkson et al. 2010). A representative ITS region sequence was deposited in GenBank (accession no. KX929095). The identity of the S. subarctica isolates was further confirmed by the lack of a 304-bp intron in the LSU rDNA compared with S. sclerotiorum (Holst-Jensen et al. 1998), which was visualized by PCR amplification and gel electrophoresis. Sclerotia of two S. subarctica isolates were placed on PDA and incubated for 7 days. Agar plugs of actively growing mycelium were used for the pathogenicity testing of spring oilseed rape plants (‘Mosaik’) in the greenhouse. Plants were inoculated at growth stage BBCH 57/59 (preflowering) and BBCH 64 (40% of flowers open) by attaching two PDA plugs of actively growing mycelium per main stems with small needles, using four plants per treatment. Noninoculated PDA agar plugs were attached to the control plants. The experiment was repeated three times. Symptoms typical of stem rot appeared after 1 to 2 weeks of incubation at 16 to 20°C, 100% relative humidity. Stems started to develop white lesions with fluffy mycelium around the inoculation sites. Control plants did not show the characteristic symptoms for Sclerotinia infection. After senescence of the plants, sclerotia were collected from inside the stems and cultured on PDA. White mycelium started to grow after 1 to 2 days and new sclerotia were formed within 7 days, similar to the ones used for producing the initial isolate. Brassica oil seed crops are cultivated as important break crops in the cereal-based production system in Norway and can be severely affected by Sclerotinia stem rot. The disease is observed in all regions where Brassica oil seed crops are grown, and in severe cases, a reduction in oilseed yield of 25% has been recorded in untreated control treatments of fungicide trials. Although S. subarctica has been previously reported on wild hosts (Holst-Jensen et al. 1998), this is the first report of the pathogen on a crop plant in Norway. In the United Kingdom, Clarkson et al. (2010) demonstrated pathogenicity of S. subarctica isolated from Ranunculus acris on oilseed rape. As symptoms for S. subarctica and S. sclerotiorum are indistinguishable, S. subarctica might be present undetected in many farmer fields.