Marta Vergarechea
Forsker
(+47) 453 94 023
marta.vergarechea@nibio.no
Sted
Ås - Bygg H8
Besøksadresse
Høgskoleveien 8, 1433 Ås
Sammendrag
Forests, especially in the northern latitudes, are vulnerable ecosystems to climate change, and tree-ring data offer insights into growth-climate relationships as an important effect. Using the National Forest Inventory plot network, we analysed these correlations for the two dominant conifer species in Norway – Norway spruce and Scots pine – for the 1960–2020 period. For both species, the June climate was an important driver of radial growth during this period. Countrywide, the climate-growth correlations divided the Norwegian forests into spatial clusters following a broad shift from temperature- to water-sensitivity of growth with latitude and altitude. The clusters were delineated by a mean 1960–2020 June temperature of ca. 12°C for Norway spruce and Scots pine. The annual mean growing season and July temperatures – but not June temperature – has increased by 1.0 °C between the 1960–1990 and 1990–2020 periods, with a slight increase in precipitation. Despite this warming and wetting trend, the long-term growth-climate relationship has remained relatively stable between 1960 and 1990 and 1990–2020 for both species. The threshold between temperature and water-sensitive growth has not changed in the last two 31-year periods, following the stability of the June temperature compared with other months during the growing season. These findings highlight geographically coherent regions in Norway, segregating between temperature- and water-sensitive radial growth for the two major conifer species, temporally stable in the long-term for the 1960–2020 period studied.
Forfattere
Aksel Granhus Clara Antón-Fernández Heleen de Wit Kjersti Holt Hanssen Fride Høistad Schei Rannveig Margrete Vigdisdatter Jacobsen Ulrika Jansson Heikki Korpunen Christian Wilhelm Mohr Jenni Nordén Jørund Rolstad Ignacio Sevillano Svein Solberg Ken Olaf Storaunet Marta VergarecheaSammendrag
Miljødirektoratet har gitt NIBIO, NINA og NIVA i oppdrag å vurdere hvilken effekt økt bruk av lukkede hogstformer kan ha for karbonlagring i skog, biodiversitet, økologisk tilstand, vannkvalitet og skognæring. Oppdraget er utført ved hjelp av gjennomgang av relevant litteratur, data fra Landsskogtakseringen, modellbaserte simuleringer og ekspertvurderinger.
Sammendrag
Introduction: Plantations located outside the species distribution area represent natural experiments to assess tree tolerance to climate variability. Climate change amplifies warming-related drought stress but also leads to more climate extremes. Methods: We studied plantations of the European larch (Larix decidua), a conifer native to central and eastern Europe, in northern Spain. We used climate, drought and tree-ring data from four larch plantations including wet (Valgañón, site V; Santurde, site S), intermediate (Ribavellosa, site R) and dry (Santa Marina, site M) sites. We aimed to benchmark the larch tolerance to climate and drought stress by analysing the relationships between radial growth increment (hereafter growth), climate data (temperature, precipitation, radiation) and a drought index. Results: Basal area increment (BAI) was the lowest in the driest site M (5.2 cm2 yr-1; period 1988–2022), followed by site R (7.5 cm2 yr-1), with the youngest and oldest and trees being planted in M (35 years) and R (150 years) sites. BAI peaked in the wettest sites (V; 10.4 cm2 yr-1; S, 10.8 cm2 yr-1). We detected a sharp BAI reduction (30% of the regional mean) in 2001 when springto-summer conditions were very dry. In the wettest V and S sites, larch growth positively responded to current March and June-July radiation, but negatively to March precipitation. In the R site, high April precipitation enhanced growth. In the driest M site, warm conditions in the late prior winter and current spring improved growth, but warm-sunny conditions in July and dry-sunny conditions in August reduced it. Larch growth positively responded to spring-summer wet conditions considering short (1-6 months) and long (9-24 months) time scales in dry (site M) and wet-intermediate (sites S and R) sites, respectively. Discussion: Larch growth is vulnerable to drought stress in dry slow-growing plantations, but also to extreme spring wet-cloudy events followed by dry-hot conditions in wet fast-growing plantations.