Sammendrag

Important losses in strawberry production are often caused by the oomycete Phytophthora cactorum, the causal agent of crown rot. However, very limited studies at molecular levels exist of the mechanisms related to strawberry resistance against this pathogen. To begin to rectify this situation, a PCR-based approach (NBS profiling) was used to isolate strawberry resistance gene analogs (RGAs) with altered expression in response to P. cactorum during a time course (2, 4, 6, 24, 48, 96 and 192 h post-infection). Twenty-three distinct RGA fragments of the NB-LRR type were identified from a resistance genotype (Bukammen) of the wild species Fragaria vesca. The gene transcriptional profiles after infection showed that the response of most RGAs was quicker and stronger in the resistance genotype (Bukammen) than in the susceptible one (FDP821) during the early infection stage. The transcriptional patterns of one RGA (RGA109) were further monitored and compared during the P. cactorum infection of two pairs of resistant and susceptible genotype combinations (Bukammen/FDP821 and FDR1218/1603). The 5′ end sequence was cloned, and its putative protein was characteristic of NBS-LRR R protein. Our results yielded a first insight into the strawberry RGAs responding to P. cactorum infection at molecular level.

Sammendrag

The apple fruit moth (Argyresthia conjugella (A. conjugella)) in Norway was first identified as a pest in apple production in 1899. We here report the first genetic analysis of A. conjugella using molecular markers. Amplified fragment length polymorphism (AFLP) analysis was applied to 95 individuals from six different locations in the two most important apple-growing regions of Norway. Five AFLP primer combinations gave 410 clear polymorphic bands that distinguished all the individuals. Further genetic analysis using the Dice coefficient, Principal Coordinate analysis (PCO) and Bayesian analyses suggested clustering of the individuals into two main groups showing substantial genetic distance. Analysis of molecular variance (AMOVA) revealed greater variation among populations (77.94%) than within populations (22.06%) and significant and high FST values were determined between the two major regions (Distance = 230 km, FST = 0.780). AFLP analysis revealed low to moderate genetic diversity in our population sample from Norway (Average: 0.31 expected heterozygosity). The positive significant correlation between the geographic and the molecular data (r2 = 0.6700) indicate that genetic differences between the two major regions may be due to geographical barriers such as high mountain plateaus (Hardangervidda) in addition to isolation by distance (IBD).

Til dokument

Sammendrag

Amplified fragment length polymorphism (AFLP) was used to study the genetic variation among 80 F. verticillioides isolates from kernels of Ethiopian maize, collected from 20 different maize growing areas in four geographic regions. A total of 213 polymorphic fragments were obtained using six EcoRI/MseI primer combinations. Analysis of the data based on all 213 polymorphic AFLP fragments revealed high level of genetic variation in the F. verticillioides entities in Ethiopia. About 58% of the fragments generated were polymorphic. The genetic similarity among F. verticillioides isolates varied from 46% to 94% with a mean Dice similarity of 73%. Unweighted Pair Group Method with Arithmetic Average (UPGMA) analysis revealed two main groups and four subgroups. The principal coordinate analysis (PCO) also displayed two main groups that agreed with the results of UPGMA analysis, and there was no clear pattern of clustering of isolates according to geographic origin. Analysis of molecular variance: (AMOVA) showed that only 1.5% of the total genetic variation was between geographic regions, while 98.5% was among isolates from the same geographic regions of Ethiopia. Eighty distinct haplotypes were recognized among the 80 isolates analyzed. Hence, breeding efforts should concentrate on quantitative resistance that is effective against all genotypes of the pathogen.

Til dokument

Sammendrag

According to the Norwegian Diversity Act, practitioners of restoration in Norway are instructed to use seed mixtures of local provenance. However, there are no guidelines for how local seed should be selected. In this study, we use genetic variation in a set of alpine species (Agrostis mertensii, Avenella flexuosa, Carex bigelowii, Festuca ovina, Poa alpina and Scorzoneroides autumnalis) to define seed transfer zones to reduce confusion about the definition of ‘local seeds’. The species selected for the study are common in all parts of Norway and suitable for commercial seed production. The sampling covered the entire alpine region (7–20 populations per species, 3–15 individuals per population). We characterised genetic diversity using amplified fragment length polymorphisms. We identified different spatial genetic diversity structures in the species, most likely related to differences in reproductive strategies, phylogeographic factors and geographic distribution. Based on results from all species, we suggest four general seed transfer zones for alpine Norway. This is likely more conservative than needed for all species, given that no species show more than two genetic groups. Even so, the approach is practical as four seed mixtures will serve the need for restoration of vegetation in alpine regions in Norway.

Sammendrag

Initial sources of inoculum of Phytophthora infestans were investigated in ten potato fields with early outbreaks of potato late blight. Infected plant samples and isolates from these fields were examined with respect to mating type prevalence, fungicide resistance and genotypes based on microsatellites A high proportion (91 %) of the isolates recovered were of mating type A1. However, both mating types were found in 3 of 9 fields with more than one isolate recovered, and sometimes both mating types were found on the same plant. Most of the isolates recovered from fields treated with metalaxyl-M prior to sampling had reduced sensitivity or were resistant to metalaxyl-M, and most of the isolates recovered form fields without metalaxyl treatment were sensitive. The isolates recovered from fields treated with propamocarb prior to sampling had a higher frequency of reduced sensitivity to propamocarb than isolates from fields without propamocarb treatment. We found that most plants contained more than one P. infestans SSR-genotype. Clustering analysis of the infected samples revealed that most samples clustered together according to fields. By combining information from P. infestans isolates and DNA extracts from the leaf lesions we found examples of both mating type A1 and A2 having the same multilocus genotype. This result indicates that both of these genotypes have a common ancestor, hence the inoculum originates from oospores. Although this a minor study of only 10 fields with a limited amount of isolates and plant samples, the results indicate oospores in the soil is an inoculum source. Hence the forecasting model to predict outbreaks of potato late blight should be modified to include this.

Sammendrag

Plasmopara halstedii is a diploid oomycete plant pathogen causing downy mildew on sunflower (Helianthus annuus). Due to changes in cultural systems and the introduction of new exotic cultivars, the pathogen developed many races and have now become a serious problem affecting sunflower growing fields in Europe. The yield losses in sunflower crop caused by P. halstedii can be up to 85 %.

Sammendrag

Det første og viktigste trinn i bekjempelse av planteskadegjørere er en korrekt identifisering av organismen som forårsaker skade. Testmetoder som er basert på deteksjon av arvestoff (DNA) til en organisme har vist seg å være svært nyttige i diagnostikken. Vi har etablert en DNA-basert test for identifisering av potetcystenematoder.