Ellen Elverland

Overingeniør

(+47) 920 10 720
ellen.elverland@nibio.no

Sted
Holt

Besøksadresse
Holtvegen 66, 9016 Tromsø

Sammendrag

Vi opplever en kraftig økning i interessen for å etablere blomsterenger. Ikke bare er blomsterenga vakker å se på, den er også viktig for det biologiske artsmangfoldet og bidrar til å ivareta de pollinerende insektene. Insekter er avhengige av blomsterplanter for å finne nektar og pollen, og blomsterplanter er avhengige av insekter for å formere seg. Blomsterenga er også viktig for bevaring av populasjoner og for å skape et sammenhengende nettverk av levesteder for mange arter. Fra et praktisk perspektiv er blomsterenga også mindre arbeidskrevende enn en plen fordi den normalt bare skal slåes en gang i sesongen. Dette er en kort innføring i hvordan man kan etablere sin egen blomstereng i nord.

Sammendrag

Tidlig gjødsling av eng etter førsteslåtten er viktig for å sikre gode avlinger i andreslåtten. Praktiske hensyn må tas, og det er et spørsmål om hvor mye avling som tapes dersom man utsetter gjødslinga noen dager. Et ettårig forsøk utført på 12 ulike steder i Norge viser store variasjoner i resultater avhengig av vårgjødsling, nitrogenstatus i jord og gjenværende plantedeler samt værforhold rundt gjødsling. Selv om tidligere forsøk viser at graset ikke nyttegjør seg av det tilførte nitrogenet før etter noen dager, er tidlig gjødsling en fordel fordi gjødsla løses opp i jorda og er tilgjengelig når plantene trenger den.

Sammendrag

Farmers in Northern Norway frequently experience winter damaged fields caused by ice encasement. The economic consequences are severe due to loss of fodder and costs with reestablishment of swards. It is therefore important to choose the best available varieties for the local climatic and environmental conditions. We tested eight Norwegian cultivars of timothy (Phleum pratense), for tolerance to ice encasement and their regrowth capacity. Both old and new cultivars, and cultivars with good overwintering capacity and less biomass production were tested against more productive cultivars with less overwintering capacity. The experiment was a semi-field setup and plants were established in pots which were placed outside. Half of the pots were covered with ice and half were kept under snow cover. During four months, pots were brought, once per month, into a greenhouse for thawing and measurement of biomass production under normal growth conditions. The results indicate that the old winter hardy cultivar ‘Engmo’ is least affected by ice encasement but produces little biomass. The joint Nordic cultivar ‘Snorri’ produced most biomass of all the cultivars after a treatment with ice cover. In conclusion, there is a large difference between cultivars in ice encasement tolerance, and ice cover affected regrowth capacity far more than snow cover

Til dokument

Sammendrag

Climate change-induced snow thaw and subsequent accumulation of ice on the ground is a potential, major threat to snow-dominated ecosystems. While impacts of ground-ice on arctic wildlife are well explored, the impacts on tundra vegetation is far from understood. We therefore tested the vulnerability of two high-arctic plants, the prostrate shrub Salix polaris and the graminoid Luzula confusa, to ice encasement for 60 days under full environmental control. Both species were tolerant, showing only minor negative responses to the treatment. Subsequent exposure to simulated late spring frost increased the amount of damaged tissue, particularly in S. polaris, compared to the pre-frost situation. Wilting shoot tips of S. polaris increased nearly tenfold, while the proportion of wilted leaves of L. confusa increased by 15%. During recovery, damaged plants of S. polaris responded by extensive compensatory growth of new leaves that were much smaller than leaves of non-damaged shoots. The results suggest that S. polaris and L. confusa are rather tolerant to arctic winter-spring climate change, and this may be part of the reason for their wide distribution range and abundance in the Arctic.

Til dokument

Sammendrag

Birks et al. question our proposition that trees survived the Last Glacial Maximum (LGM) in Northern Scandinavia. We dispute their interpretation of our modern genetic data but agree that more work is required. Our field and laboratory procedures were robust; contamination is an unlikely explanation of our results. Their description of Endletvatn as ice-covered and inundated during the LGM is inconsistent with recent geological literature.