Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2022

Sammendrag

Det er en global nedgang i ville pollinatorer, og også i Norge er mange arter truet. Hovedårsaken til dette er store landskapsendringer som har ført til at viktige leveområder for pollinerende insekter har forsvunnet. Dette er en trussel mot både det biologiske mangfoldet og sunne økosystemer som er nødvendig for en sikker matproduksjon. Et viktig tiltak for å ivareta pollinatorer er å sikre gjenværende gode leveområder som vi fremdeles har i dag og i tillegg etablere nye.

Sammendrag

NIBIO har i samarbeid med Sállir Natur AS kartlagt fem verneområder i Nordland i 2021 etter kartleggingsmetodikken Natur i Norge (NiN). Rapporten oppsummerer forhold som kommer dårlig frem i kartobjekter og egenskapsdata som har blitt registret og rapportert via NiNapp. Rapporten inneholder generelle faglige vurderinger, eventuelle observerte forvatningsrelevante problemstillinger, praktiske utfordringer i felt, eventuell usikkerhet knyttet til kartleggingsenheter og viser noen utvalgte bilder for verneområdene.

Til dokument

Sammendrag

CONTEXT For high latitude countries like Norway, one of the biggest challenges associated with greenhouse production is the limited availability of natural light and heat, particularly in winters. This can be addressed by changes in greenhouse design elements including energy saving equipment and supplemental lighting, which, however, also can have a huge impact on investments, economic performance, resources used and environmental consequences of the production. OBJECTIVE The study aimed at identifying a greenhouse design from a number of feasible designs that generated highest Net Financial Return (NFR) and lowest fossil fuel use for extended seasonal (20th January to 20th November) and year-round tomato production in Norway using different capacities of supplemental light sources as High Pressure Sodium (HPS) and Light Emitting Diodes (LED), heating from fossil fuel and electricity sources and thermal screens by implementing a recently developed model for greenhouse climate, tomato growth and economic performance. METHODS The model was first validated against indoor climate and tomato yield data from two commercial greenhouses and then applied to predict the NFR and fossil fuel use for four locations: Kise in eastern Norway, Mære in mid Norway, Orre in southwestern Norway and Tromsø in northern Norway. The CO2 emissions for natural gas used for heating the greenhouse and electricity used for lighting were calculated per year, unit fruit yield and per unit of cultivated area. A local sensitivity analysis (LSA) and a global sensitivity analysis (GSA) were performed by simultaneously varying the energy and tomato prices. RESULTS AND CONCLUSIONS Across designs and locations, the highest NFR for both production cycles was observed in Orre (116.9 NOK m−2 for extended season and 268.5 NOK m−2 for year-round production). Fossil fuel was reduced significantly when greenhouse design included a heat pump and when extended season production was replaced by a year-round production. SIGNIFICANCE The results show that the model is useful in designing greenhouses for improved economic performance and reduced CO2 emissions from fossil fuel use under different climate conditions in high latitude countries. The study aims at contributing to research on greenhouse vegetable production by studying the effects of various designs elements and artificial lighting and is useful for local tomato growers who either plan to build new greenhouses or adapt existing ones and in policy formulation regarding incentivizing certain greenhouse technologies with an environmental consideration or with a focus on increasing local tomato production.

Til dokument

Sammendrag

Phycoerythrin (PE) is a photosensitive red pigment from phycobiliprotein family predominantly present in the red algae. The concentration of PE depends on photon flux density (PFD) and the quality of light absorbed by the algae tissue. This necessitates robust techniques to extract PE from the embedded cell-wall matrix of the algal frond. Similarly, PE is sensitive to various factors which influence its stability and purity of PE. The PE is extracted from Red algae through different extraction techniques. This review explores an integrative approach of fractionating PE for the scaling-up process and commercialization. The mechanism for stabilizing PE pigment in food was critically evaluated for further retaining this pigment within the food system. The challenges and possibilities of employing efficient extraction for industrial adoption are meticulously estimated. The techniques involved in the sustainable way of extracting PE pigments improved at a laboratory scale in the past decade. Although, the complexity of industrial-scale biorefining was found to be a bottleneck. The extraction of PE using benign chemicals would be safe for food applications to promote health benefits. The precise selection of encapsulation technique with enhanced sensitivity and selectivity of the membrane would bring better stability of PE in the food matrix.