Publications

NIBIOs employees contribute to several hundred scientific articles and research reports every year. You can browse or search in our collection which contains references and links to these publications as well as other research and dissemination activities. The collection is continously updated with new and historical material.

2021

To document

Abstract

Transport cost calculations are fundamental for most types of transport research. Applications can range from estimating the cost benefits of developing transport technologies (e.g. increased truck GVWs) to comparing profitability between alternative infrastructure investments (e.g. rail or sea terminals). Most stakeholders rely on a favourite spreadsheet, however these vary considerably with respect to functionality, resolution and transparency. During 2019 and 2020 the NB Nord Road and Transport group has worked towards a common Nordic-Baltic costing framework for road, rail and sea transport. The goal has been to propose a general model per transport method which is user-friendly, while retaining the necessary resolution and functionality to model actual costs for specific transport orders or contracts. The handbook provides: a) complete explanation of its formulas, b) calculation examples and c) a corresponding Excel spreadsheet...

To document

Abstract

No abstract has been registered

Abstract

Previous application of the stochastic frontier model and subsequent measurement of the performance of the crop sector can be criticized for the estimated production function relying on the assumption that the underlying technology is the same for different agricultural systems. This paper contributes to estimating regional efficiency and the technological gap in Norwegian grain farms using the stochastic metafrontier approach. For this study, we classified the country into regions with district level of development and, hence, production technologies. The dataset used is farm-level balanced panel data for 19 years (1996–2014) with 1463 observations from 196 family farms specialized in grain production. The study used the true random effect model and stochastic metafrontier analysis to estimate region-level technical efficiency (TE) and technology gap ratio (TGR) in the two main grain-producing regions of Norway. The result of the analysis shows that farmers differ in performance and technology use. Consequently, the paper gives some regionally and farming system-based policy insights to increase grain production in the country to achieve self-sufficiency and small-scale farming in all regions.

Abstract

Denne publikasjonen presenterer en ny metodikk for estimering av endringer i lageret av jordkarbon som følge av arealbruksendringer på mineraljord. Metodikken er utviklet for bruk i den nasjonale rapporteringen av arealbrukssektoren under FNs klimakonvensjon. Metodikken baserer seg på den enkleste tilnærming i følge IPCC sine retningslinjer, en såkaldt Tier 1. Tier 1 metodikken baseres i stor grad på standardverdier fra retningslinjene (IPCC default), men trenger en kopling mot nasjonal arealinformasjon. Denne koplingen beskrives i rapporten. Metodikken tar utgangspunkt i standardverdier for lageret av jordkarbon (SOCREF). Disse er basert på jordtype-grupperinger og klimasone som stammer fra en verdensdekkende jorddatabase. Endringer i jordkarbon etter arealbruksendring estimeres ved hjelp av SOCREF i kombinasjon med et sett faktorer (også standardverdier) som er arealbruksavhengige. Metodikken legger til grunn at endringer i jordkarbon skjer lineært over 20 år (ifølge 2006 IPCC Guidelines). Grunnleggende informasjon for å kunne kople standardverdier mot arealer på en konsistent måte er stort sett manglende for Norge på nasjonal skala. Rapporten gir derfor detaljert informasjon om de datakildene som har vært brukt til å kunne definere hvilke standariserte verdier som tilhører et bestemt areal i overgang....

To document

Abstract

Anthropogenic emissions of nitrogen (N) and sulphur (S) compounds and their long-range transport have caused widespread negative impacts on different ecosystems. Critical loads (CLs) are deposition thresholds used to describe the sensitivity of ecosystems to atmospheric deposition. The CL methodology has been a key science-based tool for assessing the environmental consequences of air pollution. We computed CLs for eutrophication and acidification using a European long-term dataset of intensively studied forested ecosystem sites (n = 17) in northern and central Europe. The sites belong to the ICP IM and eLTER networks. The link between the site-specific calculations and time-series of CL exceedances and measured site data was evaluated using long-term measurements (1990–2017) for bulk deposition, throughfall and runoff water chemistry. Novel techniques for presenting exceedances of CLs and their temporal development were also developed. Concentrations and fluxes of sulphate, total inorganic nitrogen (TIN) and acidity in deposition substantially decreased at the sites. Decreases in S deposition resulted in statistically significant decreased concentrations and fluxes of sulphate in runoff and decreasing trends of TIN in runoff were more common than increasing trends. The temporal developments of the exceedance of the CLs indicated the more effective reductions of S deposition compared to N at the sites. There was a relation between calculated exceedance of the CLs and measured runoff water concentrations and fluxes, and most sites with higher CL exceedances showed larger decreases in both TIN and H+ concentrations and fluxes. Sites with higher cumulative exceedance of eutrophication CLs (averaged over 3 and 30 years) generally showed higher TIN concentrations in runoff. The results provided evidence on the link between CL exceedances and empirical impacts, increasing confidence in the methodology used for the European-scale CL calculations. The results also confirm that emission abatement actions are having their intended effects on CL exceedances and ecosystem impacts.