Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2021

Sammendrag

Norske klimaforskere kan ha kjent til menneskeskapt global oppvarming fra tidlig på 1960-tallet. Men først på 1980-tallet ble det et høyaktuelt tema. Hvorfor tok det så lang tid?

Til dokument

Sammendrag

Knowledge about the connectivity among natural populations is essential to identify management units for effective conservation actions. Conservation-minded management has led to the recovery of large carnivore populations in northern Europe, possibly restoring connectivity between the two separated, but expanding brown bear (Ursus arctos) populations on the Scandinavian peninsula to the west and Karelia, a part of the large Eurasian population, to the east. The degree of connectivity between these populations has been poorly understood, therefore we investigated the extent of connectivity between the two populations using autosomal microsatellites and Y chromosome haplotypes in 924 male bears (the dispersing sex), sampled during a period of 12 years (2005–2017) across the transborder area where these two populations meet. Our results showed that the two populations are not genetically isolated as reported in earlier studies. We detected recent asymmetrical gene flow at a rate (individuals per generation) of 4.6–5.5 (1%) from Karelia into Scandinavia, whereas the rate was approximately 27.1–34.5 (8%) in the opposite direction. We estimated historical gene flow of effective number of migrants to be between 1.7 and 2.5 between the populations. Analyses of Y chromosome markers supported these results. Successful recovery and expansion of both populations led to the restoration of connectivity, however, it is asymmetric, possibly due to different recovery histories and population densities. By aligning monitoring between neighboring countries, we were able to better understand the biological processes across the relevant spatial scale. Brown bear Genetic structure Male gene flow Microsatellites Migration Recovery Ursus arctos Wildlife monitoring Y chromosome

Til dokument

Sammendrag

Over recent decades, climate change has been particularly severe in the Mediterranean basin, where the intensity and frequency of drought events have had a significant effect on tree growth and mortality. In this context, differences in structural and physiological strategies between tree species could help to mitigate the damage inflicted by climate variability and drought events. Here, we used dendroecological approaches to observe common associations (synchrony) between indexed ring width in Pinus pinea and P. pinaster, as a measure of degree of dependence on climate variation or growth sensitivity to climate, as well as to analyze species growth responses to drought events through the Lloret’s indices of resistance, recovery and resilience. Based on data from 75 mixed and pure plots installed in the Northern Plateau of Spain, we used modeling tools to detect the effect of the mixture, along with climate and stand-related variables, on the short-term responses and long-term growth sensitivity to climate. Our results showed a trade-off between resistance and recovery after the drought episodes. In addition, different attributes of tree species, such as age and size as well as stand density seemed to act synergistically and compensate drought stress in different ways. The presence of age and quadratic mean diameter as covariates in the final synchrony model for P. pinaster reflected the influence of other variables as modulators of growth response to climate. Furthermore, differences in growth synchrony in mixed and monospecific composition suggested the existence of interactions between the two species and some degree of temporal niche complementarity. In mixed stands, P. pinaster exhibited a lower sensitivity to climate than in monospecific composition, whereas P. pinea enhanced its resistance to extreme droughts. These results allowed us to identify the species-specific behavior of P. pinea and P. pinaster to mitigate vulnerability to climate-related extremes.