Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2025

Sammendrag

Denne arbeidet bygger videre på et tidligere publisert arbeid (NIBIO Rapport 10/48, 2024), der vi ved hjelp av modellbaserte framskrivinger av prøveflatene i Landsskogtakseringen undersøkte effekten av økt andel lukket hogst på CO2 opptaket i norsk skog fram mot år 2100. En sentral forutsetning i prognosene var at årlig hogstkvantum i scenariene med økende andel lukket hogst skulle holdes på samme nivå som i referansescenariet («Business as usual», BAU), der omfanget av lukket hogst ble holdt uendret i forhold til nivået de siste årene. Resultatene viste at scenariet med høyest andel lukket hogst vil kunne øke det akkumulerte CO2-opptaket fram mot år 2100 med 31,8 Mt. Resultatene viste samtidig at dette vil kreve at det drives et aktivt skogbruk med hogst på et større areal for å kunne hogge samme kvantum som i BAU. I denne rapporten belyses nærmere hvilke typer skog som påvirkes av hogst i framskrivingene. Hogstarealet i prognosene fram mot 2100 er derfor fordelt på hogstform, skogtype (hovedtreslag), bonitetsklasser, vegetasjonstyper, klasser mht. driftsveilengde, aldersklasser, samt naturskog/ikke naturskog. Videre angis størrelsesorden av areal i yngre grandominert skog som kan være egnet for omstilling til selektiv hogst på sikt.

Sammendrag

Prosjektet undersøker hvordan egenskaper ved jordbruksareal kan forklare forskjeller i lønnsomhet mellom ulike planteproduksjoner i Norge. Prosjektet setter søkelys på variabler som jordtype, klima, og fragmentering av arealene, og hvordan disse kan påvirke lønnsomheten. Det er stor variasjon i størrelsen og utformingen av norske planteproduksjonsgårder, noe som kan påvirke driftsmetodene og avkastningen. Analysen inkluderer kartdata for arealegenskaper, som arealtilskuddssoner, jordstykkestørrelse, arealkompakthet, og leiejord. Det er også en vurdering av ulike typer planteproduksjoner, som bygg, havre, vårhvete og høsthvete, for å vurdere lønnsomheten ved hjelp av Activity-Based Costing (ABC-metoden). Resultatene fra analysene viser at driftsenheter i arealtilskuddssone 1 med egnethetsklasse «høyt potensial» har høyere lønnsomhet. Det er også en tendens til at færre, men større jordstykker gir bedre lønnsomhet. Prosjektet har som mål å utvikle metoder for datainnsamling og analyse, og vil bidra til bedre forståelse av hva som driver lønnsomhet i jordbruket, noe som kan være nyttig for bønder og beslutningstakere.

Sammendrag

Semi-naturlig eng er svært artsrike blomsterenger som representerer viktige kultur- og naturverdier arvet fra våre forfedre. Det høye biologiske mangfoldet i engene er et resultat av generasjoner med ekstensiv jordbruksdrift i form av beite og slått. På grunn av brakklegging og intensivering i jordbruket er denne naturtypen i sterk tilbakegang og vurdert som truet. Det er derfor etablert et overvåkingsprogram som dokumenterer status og identifiserer endringer i økologisk tilstand, biologisk mangfold og arealet av de få og spredte gjenværende semi-naturlige engene i Norge.

Til dokument

Sammendrag

The Norwegian Scientific Committee for Food and Environment (VKM) has assessed an application for approval of soy leghemoglobin produced from genetically modified Komagataella phaffii for food uses in the EU. In accordance with an assignment specified by the Norwegian Food Safety Authority (NFSA) and the Norwegian Environment Agency (NEA), VKM assesses whether genetically modified organisms (GMOs) intended for the European market can pose risks to human or animal health, or the environment in Norway. VKM assesses the scientific documentation regarding GMO applications seeking approval for use of GMOs as food and feed, processing, or cultivation. The EU Regulation 1829/2003/EC (Regulation) covers living GMOs that fall under the Norwegian Gene Technology Act, as well as processed food and feed from GMOs (dead material) that fall under the Norwegian Food Act. The regulation is currently not part of the EEA agreement or implemented in Norwegian law. Norway conducts its own assessments of GMO applications in preparation for the possible implementation of the Regulation. In accordance with the assignment by NFSA and NEA, VKM assesses GMO applications during scientific hearings initiated by the European Food Safety Authority (EFSA), as well as after EFSA has published its own risk assessment of a GMO, up until EU member countries vote for or against approval in the EU Commission. The assignment is divided into three stages. Soy leghemoglobin produced from genetically modified Komagataella phaffii This application is submitted to gain authorisation for the use of soy leghemoglobin (the liquid preparation is referred to as “LegH Prep”) produced from genetically modified Komagataella phaffii (yeast) as a flavouring (“meaty taste”) in meat analogue products that will be marketed in the European Union (EU). Soy leghemoglobin is intended for addition to meat analogue products that are for use in foods such as burgers, meatballs, and sausages. Komagataella phaffii-strain employed in the production of soy leghemoglobin contains genetic modifications which allow it to express this protein. Following fermentation, the cells are lysed, and the soy leghemoglobin is concentrated by physical means. The soy leghemoglobin is delivered in a liquid preparation (LegH Prep) that is standardised to contain up to 9% soy leghemoglobin on a wet weight basis and a soy leghemoglobin protein purity of at least 65%. The remainder of the protein fraction in the LegH Prep is accounted for by residual proteins from the Komagataella phaffii production strain. These residual proteins are all endogenous to Komagataella phaffii as the gene coding for the expression of soy leghemoglobin is the only gene from a different organism. VKM has assessed the documentation in application EFSA-GMO- NL-2019-162 and EFSA's scientific opinion for the use of soy leghemoglobin produced from genetically modified Komagataella phaffii. The scientific documentation provided in the application is adequate for risk assessment, and in accordance with the EFSA guidance on risk assessment of genetically modified microorganisms for use in food or feed. The VKM GMO Panel does not consider leghemoglobin from genetically modified Komagataella phaffii to imply potential specific health risks in Norway, compared to EU-countries. The EFSA opinion is adequate also for Norwegian considerations. Therefore, a full risk assessment was not performed by VKM. About the assignment: (...)

Til dokument

Sammendrag

The Norwegian Scientific Committee for Food and Environment (VKM) has assessed an application for approval of the genetically modified maize DP51291 for food and feed uses, import and processing in the EU. In accordance with an assignment specified by the Norwegian Food Safety Authority (NFSA) and the Norwegian Environment Agency (NEA), VKM assesses whether genetically modified organisms (GMOs) intended for the European market can pose risks to human or animal health, or the environment in Norway. VKM assesses the scientific documentation regarding GMO applications seeking approval for use of GMOs as food and feed, processing, or cultivation. The EU Regulation 1829/2003/EC (Regulation) covers living GMOs that fall under the Norwegian Gene Technology Act, as well as processed food and feed from GMOs (dead material) that fall under the Norwegian Food Act. The regulation is currently not part of the EEA agreement or implemented in Norwegian law. Norway conducts its own assessments of GMO applications in preparation for the possible implementation of the Regulation. In accordance with the assignment by NFSA and NEA, VKM assesses GMO applications during scientific hearings initiated by the European Food Safety Authority (EFSA), as well as after EFSA has published its own risk assessment of a GMO, up until EU member countries vote for or against approval in the EU Commission. The assignment is divided into three stages. Genetically modified maize DP51291 Genetically modified maize DP51291 (application GMFF-2021-0071) was developed via Agrobacterium tumefaciens mediated transformation. DP51291 plants contain the transgenes ipd072Aa and pat which encode the proteins IPD072Aa and PAT (phosphinothricin acetyltransferase). IPD072Aa confers protection against susceptible corn rootworm pests, and the PAT protein confers tolerance to glufosinate herbicide. The phosphomannose isomerase (PMI) protein that was used as a selectable marker. VKM has assessed the documentation in application GMFF-2021-0071 and EFSA's scientific opinion on genetically modified maize DP51291. VKM concludes that the applicant's scientific documentation for the genetically modified maize DP51291 is satisfactory for risk assessment, and in accordance with EFSA guidelines for risk assessment of genetically modified plants for food or feed uses. The genetic modifications in maize DP51291 do not indicate an increased health or environmental risk in Norway compared with EU countries. EFSA's risk assessment is therefore sufficient also for Norwegian conditions. As no specific Norwegian conditions have been identified regarding properties of the genetically modified maize DP51291, VKM's GMO panel has not performed a complete risk assessment of the maize. (...)

Sammendrag

The Norwegian Scientific Committee for Food and Environment (VKM) has assessed an application for approval of the genetically modified maize DAS1131 for food and feed uses, import and processing in the EU. In accordance with an assignment specified by the Norwegian Food Safety Authority (NFSA) and the Norwegian Environment Agency (NEA), VKM assesses whether genetically modified organisms (GMOs) intended for the European market can pose risks to human or animal health, or the environment in Norway. VKM assesses the scientific documentation regarding GMO applications seeking approval for use of GMOs as food and feed, processing, or cultivation. The EU Regulation 1829/2003/EC (Regulation) covers living GMOs that fall under the Norwegian Gene Technology Act, as well as processed food and feed from GMOs (dead material) that fall under the Norwegian Food Act. The regulation is currently not part of the EEA agreement or implemented in Norwegian law. Norway conducts its own assessments of GMO applications in preparation for the possible implementation of the Regulation. In accordance with the assignment by NFSA and NEA, VKM assesses GMO applications during scientific hearings initiated by the European Food Safety Authority (EFSA), as well as after EFSA has published its own risk assessment of a GMO, up until EU member countries vote for or against approval in the EU Commission. The assignment is divided into three stages. (link) Genetically modified maize DAS1131 DAS1131 is a genetically modified maize developed by Agrobacterium tumefaciens -mediated transformation. Maize DAS1131 plants contain the transgenes cry1Da2 and dgt-28 epsps which encode the protein Cry1Da2 and the enzyme DGT-28 EPSPS, respectively. Cry1Da2 provides resistance to certain susceptible Lepidopteran (order of butterflies and moths) pests and the enzyme DGT-28 EPSPS provides tolerance to glyphosate-based herbicides. VKM has assessed the documentation in application GMFF-2021-1530 and EFSA's scientific opinion on genetically modified maize DAS1131. VKM concludes that the applicant's scientific documentation for the genetically modified maize DAS1131 is satisfactory for risk assessment, and in accordance with EFSA guidelines for risk assessment of genetically modified plants for food or feed uses. The genetic modifications in maize DAS1131do not indicate an increased health or environmental risk in Norway compared with EU countries. EFSA's risk assessment is therefore sufficient also for Norwegian conditions. As no specific Norwegian conditions have been identified regarding properties of the genetically modified maize DAS1131, VKM's GMO panel has not performed a complete risk assessment of the maize. About the assignment: In stage 1, VKM shall assess the health and environmental risks of the genetically modified organism and derived products in connection with the EFSA scientific hearing of GMO applications. VKM shall review the scientific documentation that the applicant has submitted and possibly provide comments to EFSA. VKM must also consider: i) whether there are specific Norwegian conditions that could give other risks in Norway than those mentioned in the application, ii) whether the Norwegian diet presents a different health risk for the Norwegian population should the GMO be approved, compared to the European population, and iii) risks associated with co-existence with conventional and/or ecologic production of plants for GMOs seeking approval for cultivation. Relevant measures to ensure co-existence must also be considered. In stage 2, VKM shall assess whether comments from Norway have been satisfactorily answered by EFSA. In addition, VKM shall assess whether comments from other countries imply need for further follow-up. (...)