Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2025

Sammendrag

Innlegget handler om plast i biogass-verdikjeden, fra innsamling av matavfall fra husholdninger og næringen til oppførsel av plast under anaerob utråtning, og etterbehandling av biorest. Innlegget dekker både vanlig plast og bionedbrytbar plast. Hvordan kan man klare å produsere mest mulig biogass og samtidig sikre en biorest av høyest mulig kvalitet?

Til dokument

Sammendrag

Dyrking og sanking i byen kan øke matsikkerhet og selvforsyning under kriser. I Ukraina er urbant landbruk både beredskap og motstandsarbeid.

Til dokument

Sammendrag

The soil organic carbon (SOC) Think Tank has identified and ranked the ten most critical knowledge gaps affecting SOC stocks, based on stakeholder input and iterative validation across multiple events. These prioritized gaps reflect new insights into land use impacts, policy influences, and methodological needs, forming a foundation for targeted research and innovation.

Til dokument

Sammendrag

ABSTRACT Drained cultivated peatlands are recognized as substantial global carbon emission sources, prompting the exploration of water level elevation as a mitigation strategy. However, the efficacy of raised water table level (WTL) in Arctic/subarctic regions, characterized by continuous summer daylight, low temperatures and short growing seasons, remains poorly understood. This study presents a two‐year field experiment conducted at a northernmost cultivated peatland site in Norway. We used sub‐daily CO 2 , CH 4 , and N 2 O fluxes measured by automatic chambers to assess the impact of WTL, fertilization, and biomass harvesting on greenhouse gas (GHG) budgets and carbon balance. Well‐drained plots acted as GHG sources as substantial as those in temperate regions. Maintaining a WTL between −0.5 and −0.25 m effectively reduces CO 2 emissions, without significant CH 4 and N 2 O emissions, and can even result in a net GHG sink. Elevated temperatures, however, were found to increase CO 2 emissions, potentially attenuating the benefits of water level elevation. Notably, high WTL resulted in a greater suppression of maximum photosynthetic CO 2 uptake compared to respiration, and, yet caused lower net CO 2 emissions due to a low light compensation point that lengthens the net CO 2 uptake periods. Furthermore, the long summer photoperiod in the Arctic also enhanced net CO 2 uptake and, thus, the efficacy of CO 2 mitigation. Fertilization primarily enhanced biomass production without substantially affecting CO 2 or CH 4 emissions. Conversely, biomass harvesting led to a significant carbon depletion, even at a high WTL, indicating a risk of land degradation. These results suggest that while elevated WTL can effectively mitigate GHG emissions from cultivated peatlands, careful management of WTL, fertilization, and harvesting is crucial to balance GHG reduction with sustained agricultural productivity and long‐term carbon storage. The observed compatibility of GHG reduction and sustained grass productivity highlights the potential for future paludiculture implementation in the Arctic.