Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2019

Til dokument

Sammendrag

The Integrated Carbon Observation System (ICOS) research infrastructure is aimed at quantifying and understanding the greenhouse gas balance of Europe and neighboring regions. ICOS-Norway brings together the leading Norwegian institutes for greenhouse gas observations in the three Earth system domains atmosphere, ocean, and terrestrial ecosystems, providing world-leading competence, which is integrated into one jointly funded and operated infrastructure. This provides Norway with a state-of-the-art research infrastructure embedded in European and global efforts. Even though each Earth system domain was part of dedicated research infrastructures prior to the establishment of ICOS-Norway, the greenhouse gas community in Norway was divided and there was minimal collaboration across the Earth system domains. The overall goal of ICOS-Norway is to provide accurate and accessible data on, as well as integrated assessments of, the Norwegian carbon balance at regional scale, across the land, ocean, and atmosphere. ICOS-Norway has thus led to an increased impact of environmental observing systems in Norway and surrounding seas, easily seen through the number of publications and new proposals generated as collaborative efforts. This poster presents the ICOS-Norway infrastructure, including plans for expansion and long-term funding.

Til dokument

Sammendrag

Strawberry powdery mildew (Podosphaera aphanis Wallr.) is a pathogen which infects the leaves, fruit, stolon and flowers of the cultivated strawberry (Fragaria ×ananassa), causing major yield losses, primarily through unmarketable fruit. The primary commercial control of the disease is the application of fungicidal sprays. However, as the use of key active ingredients of commercial fungicides is becoming increasingly restricted, interest in developing novel strawberry cultivars exhibiting resistance to the pathogen is growing rapidly. In this study, a mapping population derived from a cross between two commercial strawberry cultivars (‘Sonata’ and ‘Babette’) was genotyped with single nucleotide polymorphism (SNP) markers from the Axiom iStraw90k genotyping array and phenotyped for powdery mildew susceptibility in both glasshouse and field environments. Three distinct, significant QTLs for powdery mildew resistance were identified across the two experiments. Through comparison with previous studies and scrutiny of the F. vesca genome sequence, candidate genes underlying the genetic control of this trait were identified.