Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2024

Sammendrag

Rapporten gir en oversikt over status og utvikling i nordnorsk jordbruk i perioden 2002-2022. Beregningene er gjort basert på eksisterende kartdata og data fra søknader om produksjonstilskudd. Den generelle trenden i Nord-Norge er en nedgang i jordbruksareal i drift i første del av perioden (2002 til 2012), men liten endring de siste ti årene (2012-2022). Det har samtidig vært en betydelig nedgang i antall aktive gårdsbruk gjennom hele perioden. Rapporten viser videre potensialet for jordbruksproduksjon i landsdelen, hvordan jordbruksarealene faktisk brukes og hvordan jordbrukslandskapet har forandret seg.

Sammendrag

Innføring av obligatorisk individmerking av tamrein i Norge ble vedtatt av Stortinget 13. juni 2019. I vedtaket er det forutsatt at individmerket skal komme som et tillegg til det tradisjonelle eiermerket med snitt i ørene. Det er også forutsatt at lovendringen ikke skal tre i kraft før praktiske og tekniske løsninger er på plass. Det legges opp til at type merke, utforming og hva slags informasjon merkene skal inneholde reguleres gjennom forskrift basert på et best mulig kunnskapsgrunnlag. NIBIO har gjennomført et pilotprosjekt for å teste RealTimeID som en løsning for individmerking av tamrein– et system for elektronisk individmerking av dyr. NIBIO har vurdert funksjonalitet, brukervennlighet, driftssikkerhet og dyrevelferd. Videre har NIBIO vurdert økonomiske forhold knyttet til innføring av systemet, nødvendig tilpasning av infrastruktur og de forskjellige brukernes (reineier, distrikt/siida, slakteri og forvaltning) nytte av systemet, samt mulighetene for kobling til et sentralt register for individmerker.

Til dokument

Sammendrag

CONTEXT European dairy cattle production systems (DPS) are facing multiple challenges that threaten their social, economic, and environmental sustainability. In this context, it is crucial to implement options to promote the reconnection between crop and livestock systems as a way to reduce emissions and enhance nutrient circularity. However, given the sector's diversity, the successful implementation of these options lacks an evaluation framework that jointly considers the climatic conditions, farm characteristics, manure management and mineral fertilisation practices of DPS across Europe. OBJECTIVE This study aims to develop a modelling and statistical framework to assess the effect of climatic conditions, farm characteristics, manure management and mineral fertilisation practices on the on-farm sources of greenhouse gas (GHG) emissions and nitrogen (N) losses from ten contrasting case studies for dairy production across Europe, identifying options for emissions mitigation and nutrient circularity. METHODS Using the SIMSDAIRY deterministic whole-farm modelling approach, we estimated the GHG emissions and N losses from the ten case studies. SIMSDAIRY captures the effect of different farm management choices and site-specific conditions on nutrient cycling and emissions from different components of a dairy farm. In addition, we applied the Factor Analysis for Mixed Data multivariate statistical approach to quantitative and qualitative variables and identified relationships among emissions, nutrient losses, and the particular characteristics of the case studies assessed. RESULTS AND CONCLUSIONS The results showed how intensive case study farms in temperate climates were associated with lower enteric emissions but higher emissions from manure management (e.g. housing). In contrast, semi-extensive case study farms in cooler climates exhibited higher N losses and GHG emissions, directly linked to increased mineral fertilisation, excreta during grazing, and slurry application using broadcast. Furthermore, the results indicated opportunities to improve nutrient circularity and crop-livestock integration by including high-quality forages instead of concentrates and substituting mineral fertilisers with organic fertilisers. SIGNIFICANCE The presented framework provides valuable insights for designing, implementing, and monitoring context-specific emission mitigation options and nutrient circularity practices. By combining whole-farm modelling approaches and multivariate statistical methods, we enhance the understanding of the interactions between sources of N losses and GHG emissions. We expect our findings to inform the adoption of emissions reduction and circularity practices by fostering the recoupling between crop and livestock systems.

Til dokument

Sammendrag

Climate change is and will continue to alter plant responses to their environment. This is especially prominent concerning the adaptive tracking in reproductive phenology. For wind pollinated plants, this will substantially influence their pollen seasonality, yet there are gaps in knowledge about how environmental variation influences pollen seasonality. To investigate this, we monitored daily atmospheric pollen concentrations of seven pollen types from ecologically, economically and allergenically important plants (alder, hazel, willow, birch, pine, grass and mugwort) in twelve Norwegian locations spanning the entire country for up to 28 years. Six daily meteorological variables (maximum temperature, precipitation, wind speed, relative humidity, solar radiation and atmospheric pressure) was obtained from the MET Nordic dataset with full data cover. The pollen seasonality was then modelled using four spatial, three temporal and the six meteorological variables in a generalized linear model approach with a negative binomial distribution to investigate how each variable group thematically and individually contribute to variation in pollen seasonality. We found that the full models explained the most variation, ranging from R2 = 20.3 % to 59.5 %. The models were also highly accurate, being able to predict 54.5 % to 99.1 % of daily pollen concentrations to within 20.1 pollen grains/m3. Overall, the temporal variables were able to explain more variation than spatial and meteorological variables for most pollen types. Month, altitude and maximum temperature were the most important single variables for each category. The importance of each variable could be traced back to their individual effects of reproductive phenology, plant metabolism, species distributions and pollen release processes. We further emphasise the importance of source maps and atmospheric regional transport models in further model improvements. By understanding the relevance of environmental variation to pollen seasonality we can make better predictions regarding the consequences of climate change on plant populations.

Til dokument

Sammendrag

Background: Small-scale forests (woodlots) increasingly account for a greater proportion of the total annual harvest in New Zealand. There is limited information on the extent of infrastructure required to harvest a woodlot; road density (trafficable with log trucks), landing size, or the average harvest area that each landing typically services. Methods: This study quantified woodlot infrastructure averages and evaluated influencing factors. Using publicly available aerial imagery, roads and landings were mapped for a sample of 96 woodlots distributed across the country. Factors such as total harvest area, average terrain slope, length/width ratio, boundary complexity and extraction method were recorded and investigated for correlations. Results: The average road density was 25 m/ha, landing size was 3000 m2 and each landing was serviced on average 12.8 ha. Notably, 15 of the 96 woodlots had no internal infrastructure, with the harvest completed using roads and landings located outside of the woodlot boundary. Factors influencing road density were woodlot length/width ratio, average terrain slope and boundary complexity. Landing size was influenced by average terrain slope, woodlot length/width ratio, and woodlot area. Conclusion: The results provide a contemporary benchmark of the current infrastructure requirements when harvesting a small-scale forests in New Zealand. These may be used at a high level to infer the total annual infrastructure investment in New Zealand's woodlot estate and also project infrastructure requirements over the foreseeable future. Keywords: forest infrastucture, small-scale forestry