Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2017

Til dokument

Sammendrag

Mjøldogg er den vanligste sjukdommen på jordbærplanter i plasttunneler og veksthus. Når Johan Vestbø lager nye jordbærplanter, dusjer han denne soppen bort med vann.

Til dokument

Sammendrag

Crop growth and yield are affected by water use during the season: the green water footprint (WF) accounts for rain water, the blue WF for irrigation and the grey WF for diluting agri-chemicals. We calibrated crop yield for FAO’s water balance model “Aquacrop” at field level. We collected weather, soil and crop inputs for 45 locations for the period 1992–2012. Calibrated model runs were conducted for wheat, barley, grain maize, oilseed rape, potato and sugar beet. The WF of cereals could be up to 20 times larger than the WF of tuber and root crops; the largest share was attributed to the green WF. The green and blue WF compared favourably with global benchmark values (R2 = 0.64–0.80; d = 0.91–0.95). The variability in the WF of arable crops across different regions in Europe is mainly due to variability in crop yield (cv = 45%) and to a lesser extent to variability in crop water use (cv = 21%). The WF variability between countries (cv = 14%) is lower than the variability between seasons (cv = 22%) and between crops (cv = 46%). Though modelled yields increased up to 50% under sprinkler irrigation, the water footprint still increased between 1% and 25%. Confronted with drainage and runoff, the grey WF tended to overestimate the contribution of nitrogen to the surface and groundwater. The results showed that the water footprint provides a measurable indicator that may support European water governance.

Til dokument

Sammendrag

Denne rapporten oppsummerer resultatene fra er treårig forskningsprosjekt vedrørende den unike ærfuglduna. Dunprøver fra 19 kolonier i fire ulike land ble renset på en standardisert måte og ulike parametere ble målt og testet som fill power, sammenhengskraft og resiliens. Det ble dokumentert variasjon i ulike parametere både mellom kolonier og mellom individer. Dette er den største og mest dyptgående studien av ærfugldun som har blitt utført. This report sums up the result from a three-year lasting study regarding the unique eider down. Eider down from 19 colonies was collected and we measured various parameters such as fill power,cohesion and resilience. Overall, this is the largest and most in-depth study of eider down ever performed.

Til dokument

Sammendrag

Reduced N-surpluses in dairy farming is a strategy to reduce the environmental pollution from this production. This study was designed to analyse the important variables influencing nitrogen (N) surplus per hectare and per unit of N in produce for dairy farms and dairy systems across 10 certified organic and 10 conventional commercial dairy farms in Møre og Romsdal County, Norway, between 2010 and 2012. The N-surplus per hectare was calculated as N-input (net N-purchase and inputs from biological N-fixation, atmospheric deposition and free rangeland) minus N in produce (sold milk and meat gain), and the N-surplus per unit of N-produce as net Ninput divided by N in produce. On average, the organic farms produced milk and meat with lower N-surplus per hectare (88 ± 25 kg N·ha−1) than did conventional farms (220 ± 56 kg N·ha−1). Also, the N-surplus per unit of N-produce was on average lower on organic than on conventional farms, 4.2 ± 1.2 kg N·kg N−1 and 6.3 ± 0.9 kg N·kg N−1, respectively. All farms included both fully-cultivated land and native grassland. Nsurplus was found to be higher on the fully cultivated land than on native grassland. N-fertilizers (43%) and concentrates (30%) accounted for most of the N input on conventional farms. On organic farms, biological Nfixation and concentrates contributed to 32% and 36% of the N-input (43 ± 18 N·kg N−1 and 48 ± 11 N·kg N−1), respectively. An increase in N-input per hectare increased the amount of N-produce in milk and meat per hectare, but, on average for all farms, only 11% of the N-input was utilised as N-output; however, the N-surplus per unit of N in produce (delivered milk and meat gain) was not correlated to total N-input. This surplus was calculated for the dairy system, which also included the N-surplus on the off-farm area. Only 16% and 18% of this surplus on conventional and organic farms, respectively, was attributed to surplus derived from off-farm production of purchased feed and animals. Since the dairy farm area of conventional and organic farms comprised 52% and 60% of the dairy system area, respectively, it is crucial to relate production not only to dairy farm area but also to the dairy system area. On conventional dairy farms, the N-surplus per unit of N in produce decreased with increasing milk yield per cow. Organic farms tended to have lower N-surpluses than conventional farms with no correlation between the milk yield and the N-surplus. For both dairy farm and dairy system area, N-surpluses increased with increasing use of fertilizer N per hectare, biological N-fixation, imported concentrates and roughages and decreased with higher production per area. This highlights the importance of good agronomy that well utilize available nitrogen.