Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2023

Til dokument

Sammendrag

Three lichen species, Fuscopannaria praetermissa, Lepraria borealis and Xanthomendoza fulva, are reported as additions to the biodiversity of the Gaupne area, Sogn og Fjordane, Norway. The fungal universal barcode DNA sequence (nrITS) is provided for Fuscopannaria praetermissa and Lepraria borealis. Results of preliminary molecular analyses indicate the need for a systematic revision of Lepraria borealis and other taxa in the L. neglecta group.

Til dokument

Sammendrag

Introduction: Greenhouse tomato growers face the challenge of balancing fruit size and chemical quality traits. This study focused on elucidating the interplay between plant branching and light management on these traits, while maintaining consistent shoot density. Methods: We evaluated one- and two-shoot plants under varying top light intensities using high-pressure sodium lamps and light-emitting diode (LED) inter-lighting. Results: The reduced yield in the two-shoot plants was mainly due to smaller fruit size, but not due to source strength limitations, as evaluated through leaf weight ratio (LWR), chlorophyll index, specific leaf area (SLA), leaf dry matter percentage, and stem soluble carbohydrate accumulation. Enhanced lighting improved fruit weight and various fruit traits, such as dry matter content, total soluble carbohydrate content, and phenolic content, for both one- and two-shoot plant types. Despite lower mean fruit weight, two-shoot plants exhibited higher values for chemical fruit quality traits, indicating that the fruit growth of two-shoot plants is not limited by the available carbohydrates (source strength), but by the fruit sink strength. Diurnal analysis of fruit growth showed that two-shoot plants had reduced expansion during light transitions. This drop in fruit expansion was not related to changes in root pressure (measured as xylem sap exudation from decapitated plants), but might be related to diminished xylem area in the stem joint of the two-shoot plants. The concentration of several hormones, including cytokinins, was lower in two-shoot plants, suggesting a reduced fruit sink capacity. Discussion: The predominant impact of branching to two-shoot plants on sink capacity suggests that the fruit growth is not limited by available carbohydrates (source strength). Alongside the observation that light supplementation and branching exert independent additive effects on fruit size and chemical traits, this illuminates the potential to independently regulate these aspects in greenhouse tomato production.

Sammendrag

The Norwegian Institute of Bioeconomy Research (NIBIO) has been working on many fronts to promote sustainable agriculture. As part of the Department of Biogeochemistry and Soil Quality, I will present initiatives and progress made by the NIBIO Institute in promoting soil organic matter persistence and sustainable agriculture in Norway and worldwide. Two major challenges have been targeted with a focus on Norway: waste generation by several industries (e.g., agriculture, forestry, and fishery) and the short time of the cropping season in the country due to climatic constraints. To solve these issues, we are working on several projects focused on re-utilizing waste products by producing organic fertilizers, optimizing these fertilizers (e.g., biochar N-enrichment), and improving current cropping systems with crop diversification. Our main objective is to investigate the benefits of these practices in improving soil quality and crop productivity and enhancing soil organic matter persistence. Our work on soil science also goes beyond Norwegian and Nordic conditions. Among our international collaborations, we are currently working on a multi-institution bilateral project between China and Norway to promote the restoration of a semi-arid ecosystem in Inner Mongolia. We are also often engaging in project proposals for promoting sustainable agriculture in tropical regions. To develop these ideas, we promote a combined approach of spectroscopy techniques in collaboration with other institutions, such as nanoscale secondary ion mass spectrometry (NanoSIMS) in partnership with the Technical University of Munich (TUM) and NMR spectroscopy in partnership with the National Research Council of Italy (CNR-Pisa). Also, our research facilities count on good infrastructure, focusing on incubations with 13C and 15N labeled amendments and 13C pulse labeling.

Til dokument

Sammendrag

Powdery mildew, caused by the ascomycete Podosphaera aphanis, is an important disease of strawberry. A slightly modified version of a method using steam thermotherapy to rid diseases and pests from strawberry transplants was tested against strawberry powdery mildew. Experiments took place in Norway and Florida, with potted strawberry plants heavily infected with the fungus. Aerated steam treatments of the plants were carried out as follows: a pre-treatment with steaming at 37 °C for 1 h was followed by 1 h at ambient temperature before plants were exposed to steaming at 40, 42, or 44 °C for 2 or 4 h in Norway and 44 °C for 4 h in Florida. Following steaming, plants from the different treatments and the untreated control were kept apart and protected from outside contamination of powdery mildew by growing them in closed containers with over-pressure. On steamed plants, hyphae of P. aphanis were dead and without any new spore formation after treatments, independent of temperature or exposure time; however, up to 99% of the area infected with powdery mildew prior to treatments contained actively sporulating lesions on non-steamed plants. None of the new leaves formed after steaming had powdery mildew, whereas more than half of the new leaves on non-treated plants were infected by P. aphanis. This investigation clearly indicates that steam thermotherapy can eradicate powdery mildew from strawberry transplants, and this can be achieved at lower temperatures and exposure times than previously reported for other pathogens.

Sammendrag

På oppdrag fra vannområdet Bunnefjorden med Årungen- og Gjersjøvassdraget (PURA) er den empiriske modellen Agricat 2 brukt til å beregne potensialet for erosjon og fosforavrenning fra jordbruksarealer i 16 tiltaksområder, ved faktisk drift i 2022. Arealfordelingen av faktisk drift (vekst, jordarbeiding og miljøtiltak) i 2022 har framkommet av registerdata fra Landbruksdirektoratet og føringer/informasjon fra Follo Landbrukskontor, og er fordelt på de dyrka arealene etter bestemte rutiner i modellen. Arealfordelingsrutinen i modellen ga følgende utbredelse av kombinasjon vekst/jordarbeiding i vannområdet for 2022: 47 % stubb (jordarbeiding vår eller direktesåing), 10 % gras, 11 % vårkorn med høstpløying, 14 % høstkorn med høstpløying, 15 % høstharving til vår- og høstkorn samt frukt og bær, og 3 % poteter og grønnsaker. Arealfordelingen varierte mellom tiltaksområder. Eksisterende grasdekte kantsoner og fangdammer inngikk også i beregningene. Jord- og fosfortap i vannområdet PURA i 2022 ble beregnet til henholdsvis 3,5 kilotonn SS og 6,0 tonn TP. For individuelle tiltaksområder varierte jordtapet fra nær 0 til 1,6 kilotonn, og fosfortap fra nær 0 til 2,8 tonn. Forskjeller i drift bidro til å forklare forskjellene mellom tiltaksområder.