Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2017

Sammendrag

Land management and spatial planning are closely linked to the adaptation of water management to climate change impacts. Land management has an influence on the ability of the soil to retain precipitation or flood water and sustainable land use can help to better manage risks related to both increased precipitation/flooding and water scarcity. Land and soil management can also realize significant synergies between climate change adaptation and mitigation. Agriculture as a key form of land use will play a crucial role in adaptive spatial planning approaches. Intensive agriculture in flood-prone areas is at risk of substantial economic loss in the case of flooding. On the other hand, the increased challenges for flood risk management will create a demand for new ways of accommodating flood water and managing flows, which may increase economic opportunities for water farming. There are sufficient reasons to understand land drainage arrangements importance. Drainage has been identified as the forgotten factor in sustaining a sustainable irrigated agriculture. Surface and subsurface drainage provides a lot of functions that meet some actual and challenging needs. Some of these functions are: resource base protection for food production; sustaining and increasing the yields and rural incomes; irrigation investment protection etc. This paper is based on an analysis of managing water excess in north-western Romania using Romanian expertise in this field but also the results from some bilateral projects between Romania, Norway and Iceland.

Til dokument

Sammendrag

Purpose Epidemiological and intervention studies have attempted to link the health effects of a diet rich in fruits and vegetables with the consumption of polyphenols and their impact in neurodegenerative diseases. Studies have shown that polyphenols can cross the intestinal barrier and reach concentrations in the bloodstream able to exert effects in vivo. However, the effective uptake of polyphenols into the brain is still regarded with some reservations. Here we describe a combination of approaches to examine the putative transport of blackberry-digested polyphenols (BDP) across the blood–brain barrier (BBB) and ultimate evaluation of their neuroprotective effects. Methods BDP was obtained by in vitro digestion of blackberry extract and BDP major aglycones (hBDP) were obtained by enzymatic hydrolysis. Chemical characterization and BBB transport of extracts were evaluated by LC–MSn. BBB transport and cytoprotection of both extracts was assessed in HBMEC monolayers. Neuroprotective potential of BDP was assessed in NT2-derived 3D co-cultures of neurons and astrocytes and in primary mouse cerebellar granule cells. BDP-modulated genes were evaluated by microarray analysis. Results Components from BDP and hBDP were shown to be transported across the BBB. Physiologically relevant concentrations of both extracts were cytoprotective at endothelial level and BDP was neuroprotective in primary neurons and in an advanced 3D cell model. The major canonical pathways involved in the neuroprotective effect of BDP were unveiled, including mTOR signaling and the unfolded protein response pathway. Genes such as ASNS and ATF5 emerged as novel BDP-modulated targets. Conclusions BBB transport of BDP and hBDP components reinforces the health benefits of a diet rich in polyphenols in neurodegenerative disorders. Our results suggest some novel pathways and genes that may be involved in the neuroprotective mechanism of the BDP polyphenol components.