Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2010

Sammendrag

Green algae are known to produce H2 under sulphur deprivation in a process called bio­photolysis, where solar energy is used to split water and generate O2 and H2. There is still considerable potential for im­provement and very little is known about how this mechanism varies between species. This is part of Bioforsk research activities linked to green algae and H2 production. In order to make a H2 production process from algae economically viable, we face several challenges, including bioreactor design, optimisation of environ­mental conditions, efficiency improvement by genetic and metabolic engineering. One possibility for improving the economical potential of a hydrogen production process also includes exploitation of the algal biomass which, as a result of stress reactions, may pro­duce metabolites with pharmaceutical value.  Joining forces with The Norwegian University of Life Science (UMB) and The Norwegian Forest and Landscape Institute, Bioforsk has established The Norwegian Centre for Bioenergy Research. Bioforsk has also taken a leading role on biogas in the newly established CenBio - a national Centre for Environmental- friendly Energy Research. The modern biogas laboratories are located close to facilities for plant growth studies, making them easy accessible for experimental studies of the entire chain from biomass to fertiliser. Research activities include innovative pre-treatment of substrates for increased biogas yield, effects of substrate mixtures for biogas production and digestate quality, biogas potential and biogas process studies, digestates as fertiliser, and effects on the environment and climate

Til dokument

Sammendrag

Habitat specificity analysis provides a tool for partitioning landscape species diversity on landscape elements by separating patches with many rare specialist species from patches with the same number of species, all of which are common generalists and thus provide information of relevance to conservation goals at regional and national levels. Our analyses were based upon species data from 2201 patch elements in SE Norwegian modern agricultural landscapes. The context used for measuring habitat specificity strongly influences the results. In general the gamma diversity contribution and core habitat specificity calculated from the patch data set were correlated. High values for both measures were observed for woodland, pastures and road verges whereas midfield islets and boundary transitional types were ranked low, as opposed to findings in traditional, extensively managed agricultural landscapes. This is due to our study area representing intensively used agricultural landscape elements holding a more trivial species composition, in addition to ruderals being favoured by fertility and disturbance, a finding also being supported by the semi-natural affiliation index. Results obtained by use of checklist data from the same study area diverged from patch data. Caution is needed in interpretation of habitat specificity results obtained from checklist data, because modern agricultural landscapes contain several land types which are seldom surveyed by botanists, thus being under-represented in the data set. We propose the use of core habitat specificity and gamma diversity contribution in parallel to obtain a value neutral diversity assessment that addresses patch uniqueness and other properties of conservation interests.

Sammendrag

Edvardsen, A., Halvorsen, R., Norderhaug, A., Pedersen, O. & Rydgren, K. 2010. Habitat specificity of patches in modern agricultural landscapes. Landscape ecology 25 (7): 1071-1083

Sammendrag

Den siste helga i september samla eit tjuetals produsentar, rådgjevarar og forskarar seg i Østfold for å diskutere korleis ein kan få opp produksjonen av norske hageblåbær. Entusiasmen var stor og, og kanskje markerer møtet starten på ein ny opptur for næringa?

Sammendrag

Laurbærhegg (Prunus laurocerasus) og andre Prunus-artar er utsette for å få hol i blada, såkalla haglskotsjuke. Dette er svært skjemmande og gjer at bladverket mellom anna ikkje kan omsetjast til dekorasjonar. Det er kjent frå andre land at både bakterie- og soppangrep kan gi haglskotsjuke, men her i landet er det berre funne ein sopp (Wilsonomyces carpophilus) på Prunus-artar med haglskotsjuke.

Sammendrag

I ei førsteårs frøeng av Grindstad timotei i Vestfold ble stripetynning med 25 cm avstand prøvd ut, både om høsten og våren, på ruter hvor halmen enten var kuttet ved tresking eller fjernet like etter tresking.     Stripetynningen hadde positiv virkning på avlingsnivået i andre engår. I middel for ulike halmbehandlinger var avlingsgevinsten, sammenlignet med usprøyta ruter, størst på ruter tynna tidlig om høsten (22 %) og like etter vekststart om våren (21 %).   Den positive effekten av å stripetynne var mindre på ruter hvor halmen var kuttet enn på ruter hvor halmen var fjernet. Trolig har dette sammenheng med at det skyggende laget med kuttet halm i seg selv førte til en naturlig tynning av timoteibestandet.   Forsøkene fortsetter med utlegg av nye felt i 2010. I tillegg tar en sikte på å følge de samme forsøksfeltene over flere påfølgende år, slik at den langsiktige effekten av tynningen kan vurderes nærmere.

Sammendrag

The halogens, most importantly fluorine, chlorine, bromine, and iodine, occur in nature as ions and compounds, including organic compounds. Halogenated organic substances (haloorganics) were long considered purely anthropogenic products; however, they are in addition a commonly occurring and important part of natural ecosystems. Natural haloorganics are produced largely by living organisms, although abiotic production occurs as well. A survey is given of processes of formation, transport, and degradation of haloorganics in temperate and boreal forests, predominantly in Europe. More work is necessary in order to understand the environmental impact of haloorganics in temperate and boreal forest soils. This includes both further research, especially to understand the key processes of formation and degradation of halogenated compounds, and monitoring of the substances in question in forest ecosystems. It is also important to understand the effect of various forest management techniques on haloorganics, as management can be used to produce desired effects.