Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2024

Til dokument

Sammendrag

Since 2005, the population of the trans-border brown bear (Ursus arctos) in Trilateral Park Pasvik-Inari (Norway-Finland-Russia) has been monitored by using genetic analyses of hair and faeces collected randomly in the field. A more systematic method using hair traps every fourth year was initiated in 2007 to collect brown bear hairs for genetic analysis. The method consisted of 56 hair traps in Norway, Finland and Russia in a 5 x 5 km2 grid cell system (ca 1400 km2). The project was repeated in 2011, 2015, 2019 and now in 2023. This season’s sampling was carried out in Pasvik (Norway) - Inari (Finland) area (43 squares, 1075 km2), using the same methodology as in the previous studies. A total of 97 samples were collected, where 45 samples came from Finland and 52 samples from Norway. In the bear specific analysis, 71 (73 %) of the 97 hair samples were positive. A complete DNA profile could be determined for 63 of the positive samples. In total, 22 different bear individuals were detected (10 females and 12 males). Of these 22 bears, 12 bears were detected in previous years, while 10 were previously unknown bears. In total, 13 bears were detected in Finland and 11 bears in Norway. This year’s sampling has the 2nd highest success rate in number of individuals detected per grid square, with 0,51 individual per grid square compared to 0,81 individuals in 2019 (highest success rate), 0,49 in 2015, 0,35 in 2011 and 0,42 in 2009. Our results showed that even with a smaller study area, the hair trap project every 4th year provides valuable information on the brown bear individuals in addition to a random sampling in the field (The National Monitoring Program for brown bears in Norway).

Sammendrag

The Norwegian monitoring programme for agricultural landscapes has been running for 25 years, collecting data on status and change in agricultural landscapes. The programme is based on mapping of a thousand 1 x 1km squares from aerial photographs, with field work to record birds and plants at around 10 % of the squares. In 2021, the programme introduced field recording of butterflies and bumblebees along a 1 km transect at ten monitoring squares. In spite of the low number of sites, we found a clear trend between landscape spatial structure and number of pollinators. Both the number of individuals and number of species increased with increasing landscape heterogeneity. This mirrored patterns that have been detected in the monitoring of farmland birds. Much is known about how to improve farming landscapes for pollinators. In Norway, agri-environmental subsides are available to encourage the management of flowery pollinator zones adjacent to arable land. First, farmers received payment to sow nectar-rich plants such as the non-native Phacelia tanacetifolia in field margins. Then higher subsidy rates were introduced for using seed mixes of regional plant species. The latest development is payment for managing zones adjacent to the crop, typically woodland edges. This saves agricultural soil for food production, whilst expanding the role of farmers in contributing to pollinator-friendly landscapes.

Til dokument

Sammendrag

The cultivated garden strawberry (Fragaria × ananassa) has a rich history, originating from the hybridization of two wild octoploid strawberry species in the 18th century. Two-step reconstruction of Fragaria × ananassa through controlled crossings between pre-improved selections of its parental species is a promising approach for enriching the breeding germplasm of strawberry for wider adaptability. We created a population of reconstructed strawberry by hybridizing elite selections of F. virginiana and F. chiloensis. A replicated field experiment was conducted to evaluate the population's performance for eleven horticulturally important traits, over multiple years. Population structure analyses based on Fana-50 k SNP array data confirmed pedigree-based grouping of the progenies into four distinct groups. As complex traits are often influenced by environmental variables, and population structure can lead to spurious associations, we tested multiple genome-wide association study (GWAS) models. GWAS uncovered 39 quantitative trait loci (QTL) regions for eight traits distributed across twenty chromosomes, including 11 consistent and 28 putative QTLs. Candidate genes for traits including winter survival, flowering time, runnering vigor, and hermaphrodism were identified within the QTL regions. To our knowledge, this study marks the first comprehensive investigation of adaptive and horticultural traits in a large, multi-familial reconstructed strawberry population using SNP markers.