Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2022

Sammendrag

Skogen i Norge har et årlig netto opptak av CO2 tilsvarende nær halvparten av de nasjonale menneskeskapte utslippene. Skogens bidrag i klimasammenheng kan økes gjennom økt opptak av CO2 i skog, men også ved økt lagring av karbon i treprodukter. Treproduktene (harvested wood products – HWP) som årlig rapporteres i Norges klimagassregnskap (National Inventory Report - NIR) for arealbrukssektoren (Land Use, Land-Use Change and Forestry - LULUCF) inkluderer trelast, trebaserte plater og papir- og kartongprodukter. Skogens årlige netto opptak av CO2 utgjorde i 2019 23,6 millioner tonn CO2 ekvivalenter. Årlig tilførsel samme år til lagring i treprodukter utgjorde 2% av dette (449 kt CO2). Totallageret av karbon i treprodukter i Norge i 2019 tilsvarer 109,1 millioner tonn CO2. Lagring av karbon i treproduker er et av virkemidlene for at Norge skal oppfylle sine klimamål under Parisavtalen. Med andre ord, en økning i årlig lagring av karbon i treprodukter vil bidra til å oppfylle Norges forpliktelser. Økt bruk av tre vil også kunne bidra til å redusere utslipp i andre sektorer gjennom at treprodukter kan erstatte materialer med høyere klimagasspåvirkning (substitusjon). Økt bruk av tre vil gjenspeiles i klimagassregnskapet for treprodukter, men den fulle effekten av substitusjonen vil ikke gjenspeiles i dette regnskapet. Målet med rapporten er å kvantifisere hvor stor andel av årlig hogst som rapporteres inn i treprodukter i Norges klimagassregnskap fra 1961 og fram til i dag. Økt forståelse av hvordan verdikjedens utnyttelse gjenspeiles i klimagassregnskapet er en nødvendig forutsetning for å bidra til økt fremtidig lagring av karbon i treprodukter. For å bedre forstå årsakene til variasjonene i rapporterte treprodukter mellom år, beskrives også den årlige materialflyten av alle typer treprodukter etter hogst (råmaterialer, halvfabrikata og bioenergi) basert på de årlige volumene (1961-2019) av: 1) produksjon (total nasjonal produksjon), 2) produksjon ekskl. eksport (nasjonalt forbruk), 3) eksport og 4) import.....

2021

Sammendrag

Background The Norwegian forest resource map (SR16) maps forest attributes by combining national forest inventory (NFI), airborne laser scanning (ALS) and other remotely sensed data. While the ALS data were acquired over a time interval of 10 years using various sensors and settings, the NFI data are continuously collected. Aims of this study were to analyze the effects of stratification on models linking remotely sensed and field data, and assess the accuracy overall and at the ALS project level. Materials and methods The model dataset consisted of 9203 NFI field plots and data from 367 ALS projects, covering 17 Mha and 2/3 of the productive forest in Norway. Mixed-effects regression models were used to account for differences among ALS projects. Two types of stratification were used to fit models: 1) stratification by the three main tree species groups spruce, pine and deciduous resulted in species-specific models that can utilize a satellite-based species map for improving predictions, and 2) stratification by species and maturity class resulted in stratum-specific models that can be used in forest management inventories where each stand regularly is visually stratified accordingly. Stratified models were compared to general models that were fit without stratifying the data. Results The species-specific models had relative root-mean-squared errors (RMSEs) of 35%, 34%, 31%, and 12% for volume, aboveground biomass, basal area, and Lorey’s height, respectively. These RMSEs were 2–7 percentage points (pp) smaller than those of general models. When validating using predicted species, RMSEs were 0–4 pp. smaller than those of general models. Models stratified by main species and maturity class further improved RMSEs compared to species-specific models by up to 1.8 pp. Using mixed-effects models over ordinary least squares models resulted in a decrease of RMSE for timber volume of 1.0–3.9 pp., depending on the main tree species. RMSEs for timber volume ranged between 19%–59% among individual ALS projects. Conclusions The stratification by tree species considerably improved models of forest structural variables. A further stratification by maturity class improved these models only moderately. The accuracy of the models utilized in SR16 were within the range reported from other ALS-based forest inventories, but local variations are apparent.

Sammendrag

This study aimed at estimating total forest above-ground net change (ΔAGB; Gg) over five years (2014–2019) based on model-assisted estimation utilizing freely available satellite imagery. The study was conducted for a boreal forest area (approx. 1.4 Mha) in Norway where bi-temporal national forest inventory (NFI), Sentinel-2, and Landsat data were available. Biomass change was modelled based on a direct approach. The precision of estimates using only the NFI data in a basic expansion estimator was compared to four different alternative model-assisted estimates using 1) Sentinel-2 or Landsat data, and 2) using bi- or uni-temporal remotely sensed data. We found that spaceborne optical data improved the precision of the purely field-based estimates by a factor of up to three. The most precise estimates were found for the model-assisted estimation using bi-temporal Sentinel-2 (standard error; SE = 1.7 Gg). However, the decrease in precision when using Landsat data was small (SE = 1.92 Gg). We also found that ΔAGB could be precisely estimated when remotely sensed data were available only at the end of the monitoring period. We conclude that satellite optical data can considerably improve ΔAGB estimates, when repeated and coincident field data are available. The free availability, global coverage, frequent update, and long-term time horizon make data from programs such as Sentinel-2 and Landsat a valuable data source for consistent and durable monitoring of forest carbon dynamics.

Sammendrag

Key message Large-scale forest resource maps based on national forest inventory (NFI) data and airborne laser scanning may facilitate synergies between NFIs and forest management inventories (FMIs). A comparison of models used in such a NFI-based map and a FMI indicate that NFI-based maps can directly be used in FMIs to estimate timber volume of mature spruce forests. Context Traditionally, FMIs and NFIs have been separate activities. The increasing availability of detailed NFI-based forest resource maps provides the possibility to eliminate or reduce the need of field sample plot measurements in FMIs if their accuracy is similar. Aims We aim to (1) compare a timber volume model used in a NFI-based map and models used in a FMI, and (2) evaluate utilizing additional local sample plots in the model of the NFI-based map. Methods Accuracies of timber volume estimates using models from an existing NFI-based map and a FMI were compared at plot and stand level. Results Estimates from the NFI-based map were similar to or more accurate than the FMI. The addition of local plots to the modeling data did not clearly improve the model of the NFI-based map. Conclusion The comparison indicates that NFI-based maps can directly be used in FMIs for timber volume estimation in mature spruce stands, leading to potentially large cost savings.

Sammendrag

Rapporten gir en oversikt over tilstand i norsk skog for referanseåret 2017, basert på data registrert på Landsskogtakseringens permanente prøveflater i perioden 2015-2019. Resultat vises for hele landet og regioner.

Sammendrag

Butt rot (BR) damage of a tree results from a decay caused by a pathogenic fungus. BR damages associated with Norway spruce (Picea abies [L.] Karst.) account for considerable economic losses in timber production across the northern hemisphere. While information on BR damages is critical for optimal decision-making in forest management, maps of BR damages are typically lacking in forest information systems. Timber volume damaged by BR was predicted at the stand-level in Norway using harvester information of 186,026 stems (clear-cuts), remotely sensed, and environmental data (e.g. climate and terrain characteristics). This study utilized Random Forests models with two sets of predictor variables: (1) predictor variables available after harvest (theoretical case) and (2) predictor variables available prior to harvest (mapping case). Our findings showed that forest attributes characterizing the maturity of forest, such as remote sensing-based height, harvested timber volume and quadratic mean diameter at breast height, were among the most important predictor variables. Remotely sensed predictor variables obtained from airborne laser scanning data and Sentinel-2 imagery were more important than the environmental variables. The theoretical case with a leave-stand-out cross-validation resulted in an RMSE of 11.4 m3 · ha−1 (pseudo-R2: 0.66) whereas the mapping case resulted in a pseudo-R2 of 0.60. When spatially distinct clusters of harvested forest stands were used as units in the cross-validation, the RMSE value and pseudo-R2 associated with the mapping case were 15.6 m3 · ha−1 and 0.37, respectively. The findings associated with the different cross-validation schemes indicated that the knowledge about the BR status of spatially close stands is of high importance for obtaining satisfactory error rates in the mapping of BR damages.