Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2023

Til dokument

Sammendrag

Forests are a substantial terrestrial carbon sink, but anthropogenic changes in land use and climate have considerably reduced the scale of this system1. Remote-sensing estimates to quantify carbon losses from global forests2,3,4,5 are characterized by considerable uncertainty and we lack a comprehensive ground-sourced evaluation to benchmark these estimates. Here we combine several ground-sourced6 and satellite-derived approaches2,7,8 to evaluate the scale of the global forest carbon potential outside agricultural and urban lands. Despite regional variation, the predictions demonstrated remarkable consistency at a global scale, with only a 12% difference between the ground-sourced and satellite-derived estimates. At present, global forest carbon storage is markedly under the natural potential, with a total deficit of 226 Gt (model range = 151–363 Gt) in areas with low human footprint. Most (61%, 139 Gt C) of this potential is in areas with existing forests, in which ecosystem protection can allow forests to recover to maturity. The remaining 39% (87 Gt C) of potential lies in regions in which forests have been removed or fragmented. Although forests cannot be a substitute for emissions reductions, our results support the idea2,3,9 that the conservation, restoration and sustainable management of diverse forests offer valuable contributions to meeting global climate and biodiversity targets.

Til dokument

Sammendrag

Recent decades have seen increased temperatures and precipitation in the Nordic countries with long-term projections for reduced frost duration and depth. The consequence of these trends has been a gradual shift of delivery volumes to the frost-free season, requiring more agile management to exploit suitable weather conditions. Bearing capacity and trafficability are dependent on soil moisture state and in this context two satellite missions offer potenially useful information on soil moisture levels; NASA’s SMAP (Soil Moisture Active Passive) and ESA’s Sentinel-1. The goal of this pilot study was to quantify the performance of such satellite-based soil moisture variables for modeling forest road bearing capacity (e-module) during the frost-free season. The study was based on post-transport registrations of 103 forest road segments on the coastal and interior side of the Scandinavian mountain range. The analysis focused on roads of three types of surface deposits. Weekly SMAP soil moisture values better explained the variation in road e-module than soil water index (SWI) derived from Sentinel-1. Soil Water Index (SWI), however, reflected the weather conditions typical for operations on the respective surface deposit types. Regression analysis using (i) SMAP-based soil dryness index and (ii) its interaction with surface deposit types, together with (iii) the ratio between a combined SMAP_SWI dryness index and segment-specific depth to water (DTW) explained over 70% of the variation in road e-module. The results indicate a future potential to monitor road trafficability over large supply areas on a weekly level, given further refinement of study methods and variables for improved prediction.

Til dokument

Sammendrag

This paper explores the utilisation of gauge rainfall and satellite-based precipitation product (SPP)-TRMM3B42, to develop IDF curves for the Fiji Islands. The study compares the application of remote sensing data against rain gauge (RG) data for two main stations, Nadi and Nausori (1991 to 2020). The accuracy of SPPs is evaluated through statistical analysis, employing continuous and categorical evaluation indices. The results indicate that TRMM3B42 tends to overestimate light precipitation and underestimate heavy rainfall in low elevations when compared to rain gauge data. Rainfall intensities derived from satellite data exhibit relative changes within ± 10%. This study also performs future projections. Two greenhouse emission scenarios, Shared Socioeconomic Pathways (SSP) 2–4.5 and 5–8.5, are employed for IDF curve projection. The analysis reveals that changes in IDF curves are more pronounced for short-duration rainfall as compared to high-duration rainfall. Additionally, higher emission scenarios demonstrate greater changes compared to lower scenarios. These findings emphasise the importance of accounting for climate change and future projections in designing urban infrastructure, particularly considering potential urban expansion and human settlements. This study helps in solving design problems associated with urban runoff control and disposal where knowing the rainfall intensities of different return periods with different durations is vital.

Til dokument

Sammendrag

In this study, we leverage geographical coordinates and firm-level panel data to uncover variations in production across different locations. Our approach involves using a semiparametric proxy variable regression estimator, which allows us to define and estimate a customized production function for each firm and its corresponding location. By employing kernel methods, we estimate the nonparametric functions that determine the model’s parameters based on latitude and longitude. Furthermore, our model incorporates productivity components that consider various factors that influence production. Unlike spatially autoregressive-type production functions that assume a uniform technology across all locations, our approach estimates technology and productivity at both the firm and location levels, taking into account their specific characteristics. To handle endogenous regressors, we incorporate a proxy variable identification technique, distinguishing our method from geographically weighted semiparametric regressions. To investigate the heterogeneity in production technology and productivity among Norwegian grain farmers, we apply our model to a sample of farms using panel data spanning from 2001 to 2020. Through this analysis, we provide empirical evidence of regional variations in both technology and productivity among Norwegian grain farmers. Finally, we discuss the suitability of our approach for addressing the heterogeneity in this industry.