Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2025

Til dokument

Sammendrag

Non-steady-state chambers are widely used for measuring the exchange of greenhouse gases (GHGs) between soils or ecosystems and the atmosphere. It is known that non-steady-state chambers induce a non-linear concentration development inside the chamber after closure, even across short chamber closure periods, and that both linear and non-linear flux estimates are impacted by the chamber closure period itself. However, despite the existence of recommendations on how long to keep the chamber closed, it has been little explored to what extent the length of the chamber closure period affects the estimated flux rates, and which closure periods may provide the most accurate linear and non-linear flux estimates. In the current study, we analyzed how linear regression and Hutchinson and Mosier (1981) modeled flux estimates were affected by the length of the chamber closure period by increasing it in increments of 30 s, with a minimum and maximum chamber closure period of 60 and 300 s, respectively. Across 3,159 individual soil CO2 and CH4 flux measurements, the effect of chamber closure period length varied between 1.4–8.0% for linear regression estimates and between 0.4–17.8% for Hutchinson–Mosier estimates and the largest effect sizes were observed when the measured fluxes were high. Both linear regression and Hutchinson–Mosier based flux estimates decreased as the chamber closure period increased. This effect has been observed previously when using linear regression models, but the observed effect on Hutchinson-Mosier modeled estimates is a novel finding. We observed a clear convergence between the short-period linear regression estimates and the long-period Hutchinson–Mosier estimates, showing that closure periods as short as possible should be used for linear regression flux estimation, while ensuring long-enough closure periods to observe a stabilization of flux estimates over time when using the Hutchinson-Mosier model. Our analysis was based on soil flux measurements, but because the perturbation of the concentration gradient is related to the non-steady-state chamber technique rather than the measured ecosystem component, our results have implications for all flux measurements conducted with non-steady-state chambers. However, optimal chamber closure times may depend on individual chamber designs and analyzer setups, which suggests testing individual chamber/system designs for optimal measurement periods prior to field application

Til dokument

Sammendrag

Det er ikke registrert sammendrag

Til dokument

Sammendrag

Algal-based wastewater remediation systems (phycoremediation) include phycosphere bacterial communities that influence algal growth, pollutant remediation, and downstream applications of biomass as fertilizers or bio-stimulants. This study investigated the bacterial community dynamics in a novel phycoremediation system using a co-culture of the green algae Stigeoclonium sp. and Oedogonium vaucheri. Bacterial abundance was estimated using flow cytometry (FCM), while community composition was assessed through 16S rRNA gene metabarcoding. Additionally, 28 bacterial strains were isolated from the bioremediation experiment, cultured, genetically characterized for identification and screened for production of the auxin phytohormone indole-3-acetic acid (IAA). Metabarcoding showed that the free-living bacterial community consisted of bacteria from both the wastewater effluent and the algal inocula, while the attached phycosphere community was dominated by bacteria from the algal inocula, indicating the stability of the algae-associated phycosphere. Taxa known to include plant growth-promoting bacteria (PGPB) were abundant, and several strains produced IAA. The bacterial community composition, combined with the potential production of phytohormone by isolated bacteria indicates symbiotic or commensal algae-microbe interactions within the phycosphere bacterial communities. Sterile filtration of wastewater effluent, including only the algal inoculum bacterial communities, reduced algal biomass production and increased bacterial abundance. This study highlights the critical role of microbial interactions in engineered ecosystems and provides insights for optimizing algal-based wastewater treatment technologies.