Publikasjoner
NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.
2019
Sammendrag
Det er ikke registrert sammendrag
Forfattere
Eva Narten HøbergSammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Forfattere
Eva Narten HøbergSammendrag
Det er ikke registrert sammendrag
Sammendrag
The genus Scapania comprises a group of leafy liverworts distributed throughout many bryophytic assemblages. While many Scapania species grow widely, some are assessed as endangered and appear to be specialists with distinct niche environments. Several are found only in alpine forest communities, inhabiting decaying logs in streams, typical of an environment that is threatened by both logging activity and changes to watercourses. Another species, S. nimbosa, has an unusual Oceanic-Montane distribution across Ireland, Scotland, Norway, China and Nepal. Since gemmae and sexual reproduction are absent the species is hypothesized to be primarily dispersed by fragmentation. In Norway S. nimbosa occupies an area of only 13 x 20 km, at altitudes between 300-980 m, and is frequently found with another more abundant asexual species, S. ornithopodioides. This makes S. nimbosa susceptible to local extinction through climate change or perhaps interspecific competition. Genomics is being increasingly used to infer demography and the evolutionary history of a species. Ascertaining levels of genetic variation can also contribute towards an effective conservation management plan. Besides, very little is known about the genomic organization and sexual determination in leafy liverworts. To generate new knowledge about the genus Scapania we sequenced the genomes of the sexual species S. nemorea (both male and female isolates), S. undulata (a single isolate), and several asexual S. ornithopodiodes and S. nimbosa isolates. Illumina paired-end (2x 300 bp) and Oxford Nanopore long reads were used to create genomic references. Initially organellar genomes were assembled, annotated and genetic variation was discovered. This revealed that variation is indeed present even for S. nimbosa and S. ornithopodioides at Norwegian sites. Next we focussed on creating a high quality nuclear reference genome for S. nemorea using the SPAdes assembler (v3.13). Qualities of each assembly and isolate were assessed with QUAST and BUSCO. While one assembly spans 202.6 Mb (10930 scaffolds; N50 of 66 Kb), other isolates of S. nemorea show larger assembled genome sizes and different Kmer distributions, consistent with the expected alternative sexual chromosome complement. We further analyse genomic synteny and diversity, but emphasize that difficulties in extracting DNA from herbarium specimens really hamper analysis.
Forfattere
Björn RingselleSammendrag
Det er ikke registrert sammendrag
Forfattere
Sille Rebane Kalev Jõgiste Eneli Põldveer John A. Stanturf Marek MetslaidSammendrag
Boreal and temperate forests cover a large part of the Earth. Forest ecosystems are a key focus for research because of their role in the carbon (C) balance and cycle. Increasing atmospheric temperatures, different disturbances (fire, storm and insects) and forest management (clear-cutting) will change considerably the C status of forest ecosystems. Using the eddy covariance (EC) method, we can define interactions among environmental factors that influence the C-balance and whether a forest ecosystem is functioning as a C-sink or C-source or possibly is C-neutral. In our review of published studies of different disturbances, we found that most of the post-disturbance studies based on EC method focused on the effects of forest fire and clear-cutting, only a few studies studies focused on the effects of storms and insects. Generally a forest is a C-source until several years after disturbance and then a forest is able to absorb C and become a C-sink. Recovery to C-sink status required up to 20 years in clear-cut areas. Recovery following wildfire disturbance was much longer, possibly more than 50 years. Recovery to C-sink status required approximately 5 years after storm and insect outbreak, however we can not predict overall recovery period because of the missing data.
Sammendrag
Det er ikke registrert sammendrag