Publikasjoner
NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.
2020
Abstract
Plastics in terrestrial ecosystems negatively affect their functioning by altering physical properties and disturbing soil microorganisms. The same could be true for biodegradable plastics entering nature through incomplete degradation in composting plants, and their subsequent application to soil in fertilizer substrate. So far, no standard analysis protocol for biodegradable plastic degradation exist. This Master's thesis has focused on developing methods for the analysis of biodegradable plastic degradation in a compost matrix and lays a foundation which later research can be built upon. Fenton's reagent and hydrogen peroxide were tested as a sample up-concentrating pre-treatment of an organic matter matrix containing biodegradable microplastics. The degradation of four different biodegradable plastics in nylon bags in a compost tumbler and a compost oven incubation were assessed. Samples for pH and phospholipid fatty acids (PLFA) of different treatments were collected to compare their development and interchangeability. Fenton's reagent was the better suited up-concentrating pre-treatment for samples with some uncertainty remaining. Assessing the biodegradable plastic degradation indicated an incomplete process in home composts and (Norwegian) composting plants. pH values coarsely reflected the composting conditions and suggested interchangeability of most treatments. Analysis of pH together with PLFA results would have been optimal, but could not be accomplished as the COVID-19 epidemic hindered the PLFA analysis. While some uncertainties in the developed methods remain, it can be concluded that a basis for establishing biodegradable plastic degradation analysis was created. Subsequent research should continue their development to assess whether biodegradable plastic remains from composting plants contribute to the accumulation of plastics in terrestrial ecosystems.
Abstract
To achieve a complete organic value chain, we need organic seed from cultivars adapted to organic growing. A separate breeding for organic growing is difficult to achieve in small markets. Many breeding goals are equal for organic and conventional cereals, and cultivars failing to qualify as a commercial variety for conventional growing may possibly perform well in organic growing, with different regimes of fertilisation and plant protection. A field trial was conducted over 2 years to compare 25 cultivars of spring wheat, ranging from one land race and some old varieties released between 1940 and 1967, to modern market varieties and breeding lines. Grain yield, agronomic characteristics and grain and flour quality, including mineral content, were recorded. The performance of the 20 most interesting cultivars in artisan bread baking was measured, as were sensory attributes in sourdough bread from six cultivars. Modern varieties and breeding lines gave higher yields and had larger kernels, better grain filling, higher falling numbers and higher SDS-sedimentation volumes compared with old cultivars. The old cultivars, on average, had higher concentrations of minerals, although the growing site had a strong effect on mineral concentrations. Bread from modern cultivars performed best in a baking test. Several sensory attributes such as juiciness, chew resistance, firmness, acid taste and vinegar odour varied significantly between the six tested cultivars. Land races and old varieties have an important cultural value, and many consumers are willing to pay a premium price for such products. This will be required since yield levels are often considerably lower, especially with humid weather conditions at harvest.
Abstract
Det er ikke registrert sammendrag
Abstract
The worldwide decline in bees and other pollinating insects is a threat to biodiversity and food security, and it is urgent to take action. One of the causes for insect decline is the use of harmful pesticides in agriculture. In the presented study we use Norwegian apple production as a case-study to investigate which of the three groups: farmers, consumers and public authorities, have the most responsibility for protecting bees against harmful pesticides. The questions are investigated empirically with qualitative data material from Norwegian apple farmers, consumers and public authorities, and survey data from consumers and farmers. Our results indicate that consumers see public authorities and farmers as equally responsible for protecting the bees, while farmers are inclined to see themselves as more responsible. Neither groups consider consumers to have any large responsibility. Among the consumers there is also a high level of trust in both farmers and public authorities.
Abstract
Wood in service is sequestering carbon, but it is principally prone to deterioration where different fungi metabolize wood, and carbon dioxide is released back to the atmosphere. A key prerequisite for fungal degradation of wood is the presence of moisture. Conversely, keeping wood dry is the most effective way to protect wood from wood degradation and for long-term binding of carbon. Wood is porous and hygroscopic; it can take up water in liquid and gaseous form, and water is released from wood through evaporation following a given water vapour pressure gradient. During the last decades, the perception of wood-water relationships changed significantly and so did the view on moisture-affected properties of wood. Among the latter is its susceptibility to fungal decay. This paper reviews findings related to wood-water relationships and their role for fungal wood decomposition. These are complex interrelationships not yet fully understood, and current knowledge gaps are therefore identified. Studies with chemically and thermally modified wood are included as examples of fungal wood substrates with altered moisture properties. Quantification and localization of capillary and cell wall water – especially in the over-hygroscopic range – is considered crucial for determining minimum moisture thresholds (MMThr) of wood-decay fungi. The limitations of the various methods and experimental set-ups to investigate wood-water relationships and their role for fungal decay are manifold. Hence, combining techniques from wood science, mycology, biotechnology and advanced analytics is expected to provide new insights and eventually a breakthrough in understanding the intricate balance between fungal decay and wood-water relations.
Abstract
Det er ikke registrert sammendrag
Abstract
Det er ikke registrert sammendrag
Authors
Karin Juul HesselsøeAbstract
Det er ikke registrert sammendrag
Authors
Karin Juul HesselsøeAbstract
Det er ikke registrert sammendrag
Authors
Marit AlmvikAbstract
Det er ikke registrert sammendrag