Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2024

Til dokument

Sammendrag

Context Traditional critical nitrogen (N) dilution curve (CNDC) construction for N nutrition index (NNI) determination has limitations for in-season crop N diagnosis and recommendation under diverse on-farm conditions. Objectives This study was conducted to (i) develop a new rice (Oryza sativa L.) critical N concentration (Nc) determination approach using vegetation index-based CNDCs; and (ii) develop an N recommendation strategy with this new Nc determination approach and evaluate its reliability and practicality. Methods Five years of plot and on-farm experiments involving three japonica rice varieties were conducted at fourteen sites in Qixing Farm, Northeast China. Two machine learning (ML) methods, random forest (RF) and extended gradient boosting (XGBoost) regression, were used to fuse multi-source data including genotype, environment, management, growth stage, normalized difference vegetation index (NDVI) and normalized difference red edge (NDRE) from portable active canopy sensor RapidSCAN. The CNDC was established using NDVI and NDRE instead of aboveground biomass (AGB) measured by destructive sampling. A new in-season N diagnosis and recommendation strategy was further developed using direct and indirect NNI prediction using multi-source data fusion and ML models. Results The new CNDC based on NDVI or NDRE explained 94−96 % of Nc variability in the evaluation dataset when it was coupled with environmental and agronomic factors using ML models. The ML-based PNC and NNI prediction models explained 85 % and 21–36 % more variability over simple regression models using NDVI or NDRE in the evaluation dataset, respectively. The new in-season N diagnosis strategy using the NDVI and NDRE-based CNDCs and plant N concentration (PNC) predicted with RF model and multi-source data fusion performed slightly better than direct NNI prediction, explaining 7 % more of NNI variability and achieving 89 % of the areal agreement for N diagnosis across all evaluation experiments. Integrating this new N management strategy into the precision rice management system (as ML_PRM) increased yield, N use efficiency (NUE) and economic benefits over farmer’s practice (FP) by 7–15 %, 11–71 % and 4–16 % (161–596 $ ha−1), respectively, and increased NUE by 11–26 % and economic benefits by 8–97 $ ha−1 than regional optimum rice management (RORM) under rice N surplus status under on-farm conditions. Conclusions In-season rice N status diagnosis can be improved using NDVI- and NDRE-based CNDC and PNC predicted by ML modeling with multi-source data fusion. Implications The active canopy sensor- and ML-based in-season N diagnosis and management strategy is more practical for applications under diverse on-farm conditions and has the potential to improve rice yield and ecological and economic benefits.

Til dokument

Sammendrag

Efficient and accurate in-season diagnosis of crop nitrogen (N) status is crucially important for precision N management. The main objective of this study was to develop a strategy for in-season dynamic diagnosis of maize (Zea mays L.) N status across the growing season by integrating proximal sensing and crop growth modeling. In this study, we integrated plant N concentration (PNC) derived from leaf fluorescence sensor data and aboveground biomass (AGB) based on the best-performing spectral index calculated from active canopy reflectance sensor data with simulated PNC and AGB using a crop growth model, DSSAT-CERES-Maize, for dynamic in-season maize N status diagnosis across the growing season. The results confirmed the applicability of leaf fluorescence sensing for PNC estimation and active canopy reflectance sensing for AGB estimation, respectively. The calibrated DSSAT CERES-Maize model performed well for simulating AGB (R2 = 0.96), which could be used for calculating the N status indicator, N nutrition index (NNI). However, the model did not perform satisfactorily for PNC simulation, with significant discrepancies between the simulated and measured PNC values. The data integration method using both proximal sensing and crop growth modeling produced accurate predictions of NNI (R2 = 0.95) and N status diagnostic outcomes (Kappa statistics = 0.64) for key growth stages in this study and could be used to simulate maize N status across the growing season, showing the potential for in-season dynamic N status diagnosis and management decision support. More studies are needed to further improve this approach by multi-sensor and multi-source data fusion using machine learning models.

Til dokument

Sammendrag

Black soils, which play an important role in agricultural production and food security, are well known for their relatively high content of soil organic matter (SOM). SOM has a significant impact on the sustainability of farmland and provides nutrients for plants. Hyperspectral imaging (HSI) in the visible and near-infrared region has shown the potential to detect soil nutrient levels in the laboratory. However, using portable spectrometers directly in the field remains challenging due to variations in soil moisture (SM). The current study used spectral data captured by a handheld spectrometer outdoors to predict SOM, available nitrogen (AN), available phosphorus (AP) and available potassium (AK) with different SM levels. Partial least squares regression (PLSR) models were established to compare the predictive performance of air-dried soil samples with SMs around 20%, 30% and 40%. The results showed that the model established using dry sample data had the best performance (RMSE = 4.47 g/kg) for the prediction of SOM, followed by AN (RMSE = 20.92 mg/kg) and AK (RMSE = 22.67 mg/kg). The AP was better predicted by the model based on 30% SM (RMSE = 8.04 mg/kg). In general, model performance deteriorated with an increase in SM, except for the case of AP. Feature wavelengths for predicting four kinds of soil properties were recommended based on variable importance in the projection (VIP), which offered useful guidance for the development of portable hyperspectral sensors based on discrete wavebands to reduce cost and save time for on-site data collection.

Sammendrag

I dagens verden med krig og høye priser er matproduksjon og selvforsyningsgrad viktige temaer. Produksjonen av mathvete er viktig for å øke Norges selvforsyningsgrad. Norsk mølleindustri har svært spesifikke kvalitetskrav til kornet de bruker i sine melblandinger. Dette medfører at det tradisjonelt sett har blitt importert mye hvete slik at man har fått hvete som passer møllenes kvalitetskrav. Der det har vært brukt norsk hvete har mesteparten av denne tradisjonelt vært vårhvete. For å øke norsk selvforsyning må det dermed produseres mer hvete som oppfyller disse kvalitetskravene. Produksjon av høsthvete som har større avlingspotensiale kan være et viktig ledd i å øke selvforsyningsgraden, men da må kvaliteten være tilpasset møllenes behov. Formålet ned dette masterarbeidet er å studere hvordan strategier for delt nitrogengjødsling kan påvirke avlingsoppbygningen og proteininnholdet i kornet, og om bruk av N-sensor målinger ved aksskyting/blomstring kan være et hjelpemiddel for å oppnå en mer presis gjødslingsveiledning til bonden. Fem gjødselbehandlinger, fire lokasjoner og tre sorter ble brukt for å undersøke effekten av delt nitrogengjødsling. Hvert felt inneholdt i tilegg tre gjentak hvor hvert gjentak inneholdt alle kombinasjonene av gjødselbehandling og sort. Det ble tatt klippeprøver og N-sensormålinger ved aksskyting og blomstring for å undersøke opptatt nitrogen gjennom vekstsesongen samt undersøke om dette kan brukes til å predikere blant annet proteininnhold ved høsting. Proteininnholdet ble derimot påvirket av både total nitrogenmengde og fordelingen av nitrogen mellom delgjødsling en og to. Proteinprosenten var signifikant høyere for forsøksleddet som fikk 8 kg nitrogen ved første delgjødsel og 6 kg nitrogen ved andre delgjødsling enn forsøksleddet som fikk 14 kg nitrogen ved første delgjødsling og ingen gjødsel ved andre delgjødsling. Begge forsøksleddene fikk 8 kg nitrogen om våren. For avlingsnivå er sortsvalg viktigere enn gjødselbehandling. Kuban ga signifikant høyere avling enn både Bernstein og Ellvis. Det ble gjennomfør N-sensormålinger ved aksskyt og blomstring, og det ble tatt klippeprøver for å måle reelt N-opptak i plantebestandene ved disse tidspunktene. N-sensormålingene underestimerer nitrogenopptaket noe i forhold til klippeprøvene, spesielt når plantebestandet er preget av tørkestress. Ca. 2/3 av variasjonen i nitrogenopptaket ved z49 og z65 kunne forklares av modellen. Mer forskning og et større datamateriale er nødvendig for å utarbeide bedre modeller.