Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2018

Til dokument

Sammendrag

Tree species change has been suggested as one of the government policies to mitigate climate change in Nor-way with the aim to increase the annual uptake of CO2 and the long-term storage of carbon (C) in forests. The strategy includes replacing native, deciduous species with fast-growing species, mainly Norway spruce. A shift in tree species is expected to affect the pools and fluxes of C in the stand as well as the microbial community. As part of the BalanC project, we assess C storage related to shift in tree species cover in western Norway and whether a corresponding shift in soil microbial communities are happening. The study aim at integrating results on soil respiration, C mineralization, soil stability, diversity of bacteria, fungi and micro-eukaryotes, soil nutrient pools, litter inputs and edaphic factors at the stand level in order to identify key drivers for changes in the soil C stocks. Fifteen paired plots of native birch and planted Norway spruce at five locations were sampled. Prelimi-nary results suggests a redistribution of C from the mineral soil to the forest floor in the spruce stands, with minor changes in the total soil C pools over the 45-60 years since the tree species change. The in situ soil respi-ration and heterothropic respiration, as well as C mineralization rates, were higher in birch than in spruce stands. Differences in C mineralization rates attenuate with depth between forest types. The microbial com-munities of the three organismal groups were all strongly structured along the vertical depth.

Til dokument

Sammendrag

Private forests are widespread in Europe providing a range of ecosystem services of significant value to society, and there are calls for novel policies to enhance their provision and to face the challenges of environmental changes. Such policies need to acknowledge the importance of private forests, and importantly they need to be based on a deep understanding of how property rights held by private forest owners vary across Europe. We collected and analysed data on the content of property rights based on formal legal requirements existing in 31 European jurisdictions. To allow a comparison across jurisdictions, we constructed an original Property Rights Index for Forestry encompassing five rights domains (access, withdrawal, management, exclusion and alienation). We documented substantial variation of the private forest owners’ rights, and notably to i) make decisions in operational management and the formulation of management goals, ii) withdraw timber resources from their forest, and iii) exclude others from the use of forest resources. We identified broad relations between the scope for decision making of private forest owners and jurisdictions’ former socio-political background and geographical distribution. The variation in the content of property rights has implications for the implementation of international environmental policies, and stresses the need for tailored policy instruments, when addressing European society’s rural development, the bioeconomy, climate change mitigation measures and nature protection strategies.

Sammendrag

High concentrations of the mycotoxins HT-2 and T-2 (HT2 + T2), primarily produced by Fusarium langsethiae, have occasionally been detected in Norwegian oat grains. In this study, we identified weather variables influencing accumulation of HT2 + T2 in Norwegian oat grains. Oat grain samples from farmers’ fields were collected together with weather data (2004–2013). Spearman rank correlation coefficients were calculated between the HT2 + T2 contamination in oats at harvest and a range of weather summarisations within estimated phenological windows of growth stages in oats (tillering, flowering etc.). Furthermore, we developed a mathematical model to predict the risk of HT2 + T2 in oat grains. Our data show that adequate predictions of the risk of HT2 + T2 in oat grains at harvest can be achieved, based upon weather data observed during the growing season. Humid and cool conditions, in addition to moderate temperatures during booting, were associated with increased HT2 + T2 accumulation in harvested oat grains, whereas warm and humid weather during stem elongation and inflorescence emergence, or cool weather and absence of rain during booting reduced the risk of HT2 + T2 accumulation. Warm and humid weather immediately after flowering increased the risk, while moderate to warm temperatures and absence of rain during dough development, reduced the risk of HT2 + T2 accumulation in oat grains. Our data indicated that HT2 + T2 contamination in oats is influenced by weather conditions both pre- and post-flowering. These findings are in contrast with a previous study examining the risk of deoxynivalenol contamination in oat reporting that toxin accumulation was mostly influenced by weather conditions from flowering onwards.