Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2023

Sammendrag

The SiEUGreen project was implemented to enhance the EU-China cooperation in promoting urban agriculture (UA) for food security, resource efficiency and smart, resilient cities through the development of showcases in selected European and Chinese urban and peri-urban areas. In the last four years, SiEUGreen project assembled numerous existing and/or unexploited technologies for the first time to facilitate the development of the state-of-the-art UA model. In light of this, there is natural interest in whether SiEUGreen’s efforts resulted in meaningful impacts. Hence, the objective of this report is to determine the multi-dimensional impacts of the showcases developed and implemented by the SiEUGreen project. The analysis of the impact of the technologies or showcases implemented by the SIEUGreen mainly relies on the data obtained from other relevant tasks and deliverables within the project (e.g., showcase deployment, market analysis, and deliverables related to technology deployment). The willingness to pay studies use NIBIO’s existing data from a contingent valuation survey for willingness to pay of Oslo residents towards food produced using the target technologies. The report is presented as follows: • Section 2 gives an overview of the implementation status of the SiEUGreen technologies with the current technology readiness levels (TRLs); • Section 3 discusses the impacts in terms of land use, food security, environmental resilience and resource efficiency, and societal inclusion; • Section 4 focuses on willingness to pay studies for UA-related technologies; • Section 5 discusses the results and impact pathways; and • Section 6 provides the lessons learned and recommendations. Overall, our assessment indicates that SiEUGreen has provided a wide-ranging array of impacts in multiple dimensions: land-use, food security, environmental resilience and resource efficiency, and societal inclusion.

Til dokument

Sammendrag

Questions Observations in permanent forest vegetation plots in Norway and elsewhere indicate that complex changes have taken place over the period 1988–2020. These observations are summarised in the “climate-induced understorey change (CIUC)” hypothesis, i.e. that the understorey vegetation of old-growth boreal forests in Norway undergoes significant long-term changes and that these changes are consistent with the ongoing climate change as an important driver. Seven testable predictions were derived from the CIUC hypothesis. Location Norway. Methods Vegetation has been monitored in a total of 458 permanently marked plots, each 1 m2, in nine old-growth forest sites dominated by Picea abies at intervals of 5–8 years over the 32-year study period. For each of the 52 combinations of site and year, we obtained response variables for the abundance of single species, abundance and species density of taxonomic–ecological species groups and two size classes of cryptogams, and site species richness. All of these variables were subjected to linear regression modelling with site and year as predictors. Results Mean annual temperature, growing-season length and the number of days with precipitation were higher in the study period than in the preceding ca. 30-year period, resulting in increasingly favourable conditions for bryophyte growth. Site species richness decreased by 13% over the 32-year study period. On average, group abundance of vascular plants decreased by 24% (decrease in forbs: 38%). Patterns of group abundance change differed among cryptogam groups: although peat-moss abundance increased by 39%, the abundance of mosses, hepatics and lichens decreased by 13%, 49% and 67%, respectively. Group abundance of small cryptogams decreased by 61%, whereas a 13% increase was found for large cryptogams. Of 61 single species tested for abundance change, a significant decrease was found for 43 species, whereas a significant increase was found only for 6 species. Conclusions The major patterns of change in species richness, group species density and group abundance observed over the 32-year study period accord with most predictions from the CIUC hypothesis and are interpreted as direct and indirect responses to climate change, partly mediated through changes in the population dynamics of microtine rodents. The more favourable climate for bryophyte growth explains the observed increase for a few large bryophyte species, whereas the decrease observed for small mosses and hepatics is interpreted as an indirect amensalistic effect, brought about by shading and burial in mats of larger species and accelerated by reduced fine-scale disturbance by microtine rodents. Indirect effects of a thicker moss mat most likely drive the vascular plant decline although long-term effects of tree-stand dynamics and former logging cannot be completely ruled out. Our results suggest that the ongoing climate change has extensive, cascading effects on boreal forest ecosystems. The importance of long time-series of permanent vegetation plots for detecting and understanding the effects of climate change on boreal forests is emphasised.

Til dokument

Sammendrag

The commercial apple production in Norway is limited to the small regions along the fjords in the southwest part of the country and around lakes or near the sea in the southeast with favorable climate. Due to the rapid rate of climate change over the recent decades, it is expected that suitable heat conditions for apple growing will expand to the areas that were previously too cold. This study analyses the heat suitability of future climate (2021–2100) under the RCP8.5 scenario for 6 common apple varieties in Norway: Discovery, Gravenstein, Summerred, Aroma, Rubinstep and Elstar. Previously established heat requirement criteria (based on the temperature threshold for the full blooming and growing degree days sum between the full bloom and harvest) are applied to the temperature outputs of the regional climate models downscaled to 1 km resolution. The assessment indicates that as temperature rises, heat conditions suitable for cultivation of all 6 apple varieties will expand. According to the ensemble median value, areas with the favorable heat conditions for growing at least one of the considered apple varieties will increase 25 times in the period 2021–2040 and 60 times in the period 2041–2060, compared to the referent period 1971–2000. At the same time, areas suitable for all 6 apple varieties will increase 3 times in the first, and 3.8 times in the latter period. The favorable areas will advance from south and southeast northwards and inland in the eastern region, along the west and northwestern coastline towards higher latitudes, and along continental parts of fjords. The fastest expansion of heat suitable conditions is expected for Discovery and Gravenstein. The findings of this study are relevant for zoning apple production future potential and for strategical planning of climate change adaptation measures within the sector. Weather-related risks, such as risks from winter low temperatures, spring frost, drought and extreme precipitation were not considered.

Til dokument

Sammendrag

Agricultural production is already, and obviously, affected by climate change. Adapting to climate change includes reducing future risks to ensure yield quality and quantity and considers seizing any potential opportunities induced by climate change. In higher latitude areas, such as Norway, cold climate limits the cultivation of fruits. An increase in temperature offers more favorable conditions for fruit production. In this study, using available phenological observations (full blooming) and harvest dates, and meteorological data from the experimental orchard of NIBIO Ullensvang, the minimum heat requirements for growing different apple varieties are determined. Those criteria are used for zoning of the areas with heat favorable conditions for apple growing. Data on six varieties were used, with lower and higher requirements for heat for fruit development (Discovery, Gravenstein, Summerred, Aroma, Rubinstep, and Elstar). High resolution daily temperature data were generated and used for zoning of the areas with heat favorable conditions for apple growing within the selected domain, which includes Western Norway, Southern Norway, Eastern Norway, and the western part of Trøndelag, Mid-Norway. Dynamics of the change in such surfaces was assessed for the period of 1961–2020. The total surface with favorable heat conditions for growing the varieties with lesser requirement for heat increased three times during this period. The growing of more heat-demanding varieties increased from near zero to about 2.5% of the studied land surface. In the period of 2011–2020, surface area with favorable heat conditions for apple growing was almost 27,000 km2, and a surface area of about 4600 km2 can sustain growing of more heat-demanding varieties. The presented results show the increasing potential of the climate of Norway for apple cultivation and highlight the importance of implementation of fruit production planned according to climate change trends, including the assessment of potential risks from climate hazards. However, the methodology for determining heat requirements can be improved by using phenological ripening dates if available, rather than harvest dates which are impacted by human decision. Zoning of areas with the potential of sustainable apple growing requires the use of future climate change assessments and information on land-related features.

Til dokument

Sammendrag

The European Union (EU) set clear climate change mitigation targets to reach climate neutrality, accounting for forests and their woody biomass resources. We investigated the consequences of increased harvest demands resulting from EU climate targets. We analysed the impacts on national policy objectives for forest ecosystem services and biodiversity through empirical forest simulation and multi-objective optimization methods. We show that key European timber-producing countries – Finland, Sweden, Germany (Bavaria) – cannot fulfil the increased harvest demands linked to the ambitious 1.5°C target. Potentials for harvest increase only exists in the studied region Norway. However, focusing on EU climate targets conflicts with several national policies and causes adverse effects on multiple ecosystem services and biodiversity. We argue that the role of forests and their timber resources in achieving climate targets and societal decarbonization should not be overstated. Our study provides insight for other European countries challenged by conflicting policies and supports policymakers.