Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2019

Sammendrag

Brochure in English about NIBIO. NIBIO contributes to food security and safety, sustainable resource management, innovation and value creation through research and knowledge production. Multi-disciplinary and integrated activities Science-policy-stakeholder interactions

Til dokument

Sammendrag

With increasing intensification of the dairy sector in many countries and with the introduction of automatic milking, exercise paddocks combined with full indoor feeding, as an alternative to production pasture, are being used as a compromise between farm economics and cow welfare. This study examined whether there are production benefits for high-producing dairy cows in an alternative system that uses pasture at a level of approximately 50% of the total roughage intake in the diet. In an automatic milking system with 12-h night access to the outdoor environment, we compared milk production and behavior of cows in 2 systems: an exercise paddock combined with ad libitum grass silage indoor feeding and a production pasture combined with a restricted daytime grass silage ration. There were 20 cows in the former and 21 cows in the latter system, with the treatments running in parallel. The experiment started in late June with no complete darkness during the night, and lasted for 12 wk, with 5.6 h of darkness at the end. We therefore also explored the effect of night length on milk production and behavior parameters. All cows showed strong motivation for going outdoors and grazing when pasture access was given in early evening, but after a few hours both groups went to the barn and did not return to the pasture area during the remaining night. As the season progressed and nights became longer, cows on the exercise paddock treatment reduced time spent outdoors and grazing time, whereas they increased time spent resting outdoors. The group on exercise paddock had a greater milk yield (kg of milk) over the experimental period than the production pasture group. The latter group also showed a greater drop in milk yield over the duration of the trial. Thus, for cows milked in an automatic milking system and offered nighttime outdoor access, no milk production benefits were observed in offering production pasture with restricted indoor silage allowance instead of an exercise paddock with ad libitum silage. We therefore suggest that automatic milking farmers with similar production levels and automatic milking-management systems as in the present experiment, who wish to in-clude grazed grass as part of the dairy cow diet, should ensure that cows have pasture access in the afternoon and evening.

Til dokument

Sammendrag

Nitrogen (N) losses from agricultural areas, especially into drinking water and marine environments, attract substantial attention from governments and scientists. This study analysed nitrogen loss from runoff water using long-term monitoring data (1994–2016) from the Skuterud catchment in southeastern Norway and the Naurstad catchment in northern Norway. Precipitation and runoff were lower in the Skuterud catchment than in the Naurstad catchment. However, in the Skuterud catchment, the annual total N (TN) losses ranged from 27 to 68 kg hm−2. High precipitation (1247 mm) in the Naurstad catchment resulted in substantial runoff water (1108 mm) but relatively low total TN losses ranged from 17 to 35 kg hm−2. The proportion of nitrate losses to TN loss was 51–86% and 28–50% in the Skuterud and Naurstad catchments, respectively. Furthermore, the monthly average TN concentrations and nitrate losses had two peaks, in April–May and October, in the Skuterud catchment; however, no significant fluctuations were found in the Naurstad catchment. The contributions of N and runoff water to TN and nitrate losses were calculated using multiple linear regression, and runoff water was the major contributor to TN loss in both catchments. Runoff water was the main factor in the Skuterud catchment, and the nitrate-N concentration was the main factor in the Naurstad catchment.