Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2022

Til dokument

Sammendrag

To understand the state and trends in biodiversity beyond the scope of monitoring programs, biodiversity indicators must be comparable across inventories. Species richness (SR) is one of the most widely used biodiversity indicators. However, as SR increases with the size of the area sampled, inventories using different plot sizes are hardly comparable. This study aims at producing a methodological framework that enables SR comparisons across plot-based inventories with differing plot sizes. We used National Forest Inventory (NFI) data from Norway, Slovakia, Spain, and Switzerland to build sample-based rarefaction curves by randomly incrementally aggregating plots, representing the relationship between SR and sampled area. As aggregated plots can be far apart and subject to different environmental conditions, we estimated the amount of environmental heterogeneity (EH) introduced in the aggregation process. By correcting for this EH, we produced adjusted rarefaction curves mimicking the sampling of environmentally homogeneous forest stands, thus reducing the effect of plot size and enabling reliable SR comparisons between inventories. Models were built using the Conway–Maxell–Poisson distribution to account for the underdispersed SR data. Our method successfully corrected for the EH introduced during the aggregation process in all countries, with better performances in Norway and Switzerland. We further found that SR comparisons across countries based on the country-specific NFI plot sizes are misleading, and that our approach offers an opportunity to harmonize pan-European SR monitoring. Our method provides reliable and comparable SR estimates for inventories that use different plot sizes. Our approach can be applied to any plot-based inventory and count data other than SR, thus allowing a more comprehensive assessment of biodiversity across various scales and ecosystems.

Sammendrag

The assessment of forest abiotic damages such as snow breakage is important to ensure compensation to forest owners. Currently, information on the extent of snow breakage is gathered through time-consuming and potentially biased field surveys. In such situations where field surveys are still common practice, unmanned aerial vehicles (UAVs) are increasingly being used to provide a more cost-efficient and objective methods to answer forest information needs. Further, the advent of sophisticated computer vision techniques such as convolutional neural networks (CNNs) offers new ways to analyze image data more efficiently and accurately. We proposed an object detection method to automatically identify trees and classify them according to the damage by snow based on a YOLO CNN architecture. UAV imagery collected across 89 study areas and over the course of the entire year were manually annotated into a total of >55 K single trees classified as healthy, damaged, or dead. The annotated trees, along with the corresponding UAV imagery were used to train a YOLOv5 object detection model. Furthermore, we tested the effect of seasonality, and varying atmospheric and lighting conditions on the model’s performance. Based on an independent test set of data we found that the general model including all of the data (i.e. any seasons, atmospheric conditions, and time of the day) outperformed all other tested scenarios (i.e. precision = 62 %; recall = 61 %). Furthermore, we found that despite the fact that the snow damaged trees represented a minority class (i.e. 16 % of the annotated trees), they were detected with the largest precision (76 %) and recall (78 %). Finally, the general model transferred well across the variation in seasons, atmospheric and illumination conditions, making it suitable for usage for any new UAV image acquisition.

Til dokument

Sammendrag

Numerous species of pathogenic wood decay fungi, including members of the genera Heterobasidion and Armillaria, exist in forests in the northern hemisphere. Detection of these fungi through field surveys is often difficult due to a lack of visual symptoms and is cost-prohibitive for most applications. Remotely sensed data can offer a lower-cost alternative for collecting information about vegetation health. This study used hyperspectral imagery collected from unmanned aerial vehicles (UAVs) to detect the presence of wood decay in Norway spruce (Picea abies L. Karst) at two sites in Norway. UAV-based sensors were tested as they offer flexibility and potential cost advantages for small landowners. Ground reference data regarding pathogenic wood decay were collected by harvest machine operators and field crews after harvest. Support vector machines were used to classify the presence of root, butt, and stem rot infection. Classification accuracies as high as 76% with a kappa value of 0.24 were obtained with 490-band hyperspectral imagery, while 29-band imagery provided a lower classification accuracy (~60%, kappa = 0.13).

Til dokument

Sammendrag

Key message: Using satellite-based maps, Ceccherini et al. (Nature 583:72-77, 2020) report abruptly increasing harvested area estimates in several EU countries beginning in 2015. Using more than 120,000 National Forest Inventory observations to analyze the satellite-based map, we show that it is not harvested area but the map’s ability to detect harvested areas that abruptly increases after 2015 in Finland and Sweden. Keywords: Global Forest Watch, Landsat, Remote sensing, National Forest Inventory, Greenhouse Gas Inventory

Til dokument

Sammendrag

I 1921 kjøpte Vestlandets forstlige forsøksstasjon 340 dekar av utmarka på Auestad i Gjesdal kommune i Rogaland, der formålet var å gjera vitskaplege undersøkingar av skogetablering og produksjon i ulike treslag. Arealet var snaumark og i all hovudsak røsslynghei, ein arealtype som ofte gir langvarig veksthemming etter planting av granartar. Feltet ligg på Høg-Jæren 240-310 m o. h. på næringsfattig grunn. Litt under halvparten av arealet vart før anlegg klassifisert som eigna mark for skogreising. Jorda er morene med frisk råme, og med råhumus som dominerande humustype. Frå 1922 til 1933 vart det planta om lag 120 dekar med vanleg gran, sitkagran, engelmannsgran , blågran, vanleg furu, bergfuru, vrifuru, europeisk edelgran, douglasgran, nutkasypress og europeisk lerk. Plantinga vart gjort i ruter på om lag 70 x 70 m, med ei rute for kvar proveniens og treslag, og seinare i mindre ruter med vestamerikansk hemlokk og douglasgran. Det vart òg gjort forsøk med såing av dunbjørk. I åra 1953 til 1984 vart det oppretta 15 skogproduksjonsforsøk i planteruter med vanleg gran, sitkagran, engelmannsgran, europeisk lerk, edelgran, furu og bergfuru. Alle forsøksflatene har vore tynna ein eller fleire gonger, og forsøka har vore jamleg reviderte med nokre års mellomrom. Sju forsøk finst framleis i 2022, resten er nedlagde på grunn av ulike skadar eller hogst. Forsøksfelta i Auestad inngår i mange vitskapelege skogundersøkingar, og nokre resultat etter om lag 100 år med målingar og observasjonar er tekne med her. Alle treslaga i produksjonsforsøka, unnateke europeisk lerk, har hatt ein differanse mellom brysthøgde- og totalalder på 20 år eller meir, som viser at etableringa på lyngmark har teke tid. Produksjonen i vanleg furu etter 100 år har vore rundt 6 m3/ha/år. Lerka fekk mykje lerkekreft og forsøket vart tidleg lagt ned. Bergfurua har vist produksjon på høgde med vanleg furu, men har på grunn av sopp- og vindskadar vorte nedlagt. Tyngda av forsøksrutene i sitkagran har over eit omløp på 100 år hatt ein produksjon på 12-14 m3/ha/år, medan produksjonen for vanleg gran og edelgran ligg mellom 8 og 10 m3/ha/år. Engelmannsgrana har vist ein produksjon noko lågare enn vanleg gran og er det einaste treslaget som til no har kulminert. I furubestanda er det i biomassen bygd opp om lag 125 tonn C per hektar i løpet av 100 år, medan det i vanleg gran- og sitkagranbestanda er bygd opp høvesvis 200 og 320 tonn C. Furu-, vanleg gran- og sitkagranplantefelta inneheld høvesvis 5, 8 og 13 gonger meir karbon enn skoglaus røsslyngmark. I tillegg til eit stort kvantum med tømmer er det på dei skogreiste areala i Auestad gjennom 100 år bunde om lag 9 600 tonn CO2-ekvivalentar i biomassen. Dette utgjer skyggeverdiar estimert til 19,2 mill. kr. På hogstflater og mellom forsøksrutene er det rike oppslag av lauvtre. Areala dekkjer fleire økosystemtenester der til dømes jakt kan verdsettast, medan andre er fellesgode som det er meir vanskeleg å verdsette, mellom anna sopp- og bærplukking og bruk av stiar og vegar til rekreasjon.

Sammendrag

Aldersfri bonitering er en metode for estimering av bonitet uten bruk av alder på skogen. Metoden er utviklet ved NIBIO i seinere år, og omtalt i tidligere publikasjoner. Vi går her videre i arbeidet med å kvalitetssikre metoden, og vurderer hvilken potensiell anvendelse den kan ha i skogbruket. Samlet sett viser resultatene at aldersfri bonitet har et potensial for å brukes i skogbruk i Norge. Det kan brukes for det første som et alternativ til konvensjonell bonitering i skogbruksplanlegging og på det landsdekkende skogressurskartet SR16, og for det andre som et supplement til konvensjonell bonitet på Landsskogtakseringens felt for å overvåke endringer forårsaket av klimaendringer. I det første tilfellet er fordelen at metoden ikke krever alder som input. En generell fordel er at metoden kan fange opp endringer i bonitet som skyldes endringer i vekstvilkår grunnet for eksempel klimaendringer, og dermed i større grad enn konvensjonell bonitet representere dagens bonitet. Metoden har også den fordelen at den er velegnet for bruk med fjernmåling, og resultatene viser at både enkelttre- og areal-baserte metoder fungerer, og at både laserskanning og stereo flybilder kan brukes.

Til dokument

Sammendrag

Beitetilbud, beitetrykk, bestandsovervåking, elg, hjort, hjortevilt, hjorteviltforvaltning, Norge, rådyr, villrein, Browse abundance, Browsing pressure, Moose, Norway, Population monitoring, Red deer, Reindeer, Roe deer, Ungulate management

Til dokument

Sammendrag

Like large carnivores, hunters both kill and scare ungulates, and thus might indirectly affect plant performance through trophic cascades. In this study, we hypothesized that intensive hunting and enduring fear of humans have caused moose and other forest ungulates to partly avoid areas near human infrastructure (perceived hunting risk), with positive cascading effects on recruitment of trees. Using data from the Norwegian forest inventory, we found decreasing browsing pressure and increasing tree recruitment in areas close to roads and houses, where ungulates are more likely to encounter humans. However, although browsing and recruitment were negatively related, reduced browsing was only responsible for a small proportion of the higher tree recruitment near human infrastructure. We suggest that the apparently weak cascading effect occurs because the recorded browsing pressure only partly reflects the long-term browsing intensity close to humans. Accordingly, tree recruitment was also related to the density of small trees 5–10 years earlier, which was higher close to human infrastructure. Hence, if small tree density is a product of the browsing pressure in the past, the cascading effect is probably stronger than our estimates suggest. Reduced browsing near roads and houses is most in line with risk avoidance driven by fear of humans (behaviorally mediated), and not because of excessive hunting and local reduction in ungulate density (density mediated).