Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2022

Til dokument

Sammendrag

Rapid methods allowing for non-destructive crop monitoring are imperative for accurate in-season nitrogen (N) status assessment and precision N management. The objectives of this paper were to (1) compare the performance of a leaf fluorescence sensor Dualex 4 and an active canopy reflectance sensor Crop Circle ACS-430 for estimating maize (Zea mays L.) N status indicators across growth stages; (2) evaluate the potential of N status prediction across growth stages using the reflectance parameters acquired from the canopy sensor at an early growth stage; and, (3) investigate the prospect of combining the active canopy sensor and leaf fluorescence sensor data to estimate N nutrition index (NNI) indirectly using a general model across growth stages. The results indicated that data from both sensors were closely related to NNI across stages. However, using the direct NNI estimation method, among the tested indices, only the N balance index (NBI) could diagnose N status satisfactorily, based on the Kappa statistics. The effect of growth stages on proximal sensing was reduced by incorporating the information of days after sowing. It was found that the leaf fluorescence sensor performed relatively better in estimating plant N concentration whereas the canopy reflectance sensor performed better in aboveground biomass estimation. Their combination significantly improved the reliability of N diagnosis, including NNI prediction. In addition, the study confirmed that N status can be assessed by predicting aboveground biomass at the later stages using the canopy reflectance measurements at an early stage. Furthermore, the integrated NBI was verified to be a more robust and sensitive N status indicator than the chlorophyll concentration index. It is concluded that combining active canopy sensor data, of an early growth stage (e.g. V8), with leaf fluorescence sensor data, modified using days after sowing, can improve the accuracy of corn N status diagnosis across growth stages.

Til dokument

Sammendrag

Active crop sensor-based precision nitrogen (N) management can significantly improve N use efficiency but generally does not increase crop yield. The objective of this research was to develop and evaluate an active canopy sensor-based precision rice management system in terms of grain yield and quality, N use efficiency, and lodging resistance as compared with farmer practice, regional optimum rice management system recommended by the extension service, and a chlorophyll meter-based precision rice management system. Two field experiments were conducted from 2011 to 2013 at Jiansanjiang Experiment Station of China Agricultural University in Heilongjiang, China, involving four rice management systems and two varieties (Kongyu 131 and Longjing 21). The results indicated that the canopy sensor-based precision rice management system significantly increased rice grain yield (by 9.4–13.5%) over the farmer practice while improving N use efficiency, grain quality, and lodging resistance. Compared with the already optimized regional optimum rice management system, in the cool weather year of 2011, the developed system decreased the N rate applied in Kongyu 131 by 12% and improved N use efficiency without inducing yield loss. In the warm weather year of 2013, the canopy sensor-based management system recommended an 8% higher N rate to be applied in Longjing 21 than the regional optimum rice management, which improved rice panicle number per unit area and eventually led to increased grain yield by over 10% and improved N use efficiency. More studies are needed to further test the developed active canopy sensor-based precision rice management system under more diverse on-farm conditions and further improve it using unmanned aerial vehicle or satellite remote sensing technologies for large-scale applications.

Til dokument

Sammendrag

Accurate and non-destructive diagnosis of crop nitrogen (N) surplus and deficit status based on N nutrition index (NNI) is crucially important for the success of precision N management to improve N use efficiency (NUE) and reduce negative environmental impacts. However, due to the variability of the reflectance data obtained from different active crop sensors and complexity of the environmental and management conditions for regional applications, accurate determination of crop N status and topdressing N rate only using active canopy sensor data is very challenging. The objectives of this study were to (1) develop an in-season N status diagnosis and recommendation model based on NNI prediction using multi-source data fusion with machine learning, and (2) evaluate the accuracy of N diagnosis and recommendation in terms of rice yield and NUE under diverse on-farm conditions. Thirty plot experiments and thirteen on-farm experiments were conducted in Qixing Farm, Jiansanjiang, Northeast China from 2008 to 2018, and the dataset was used for the model calibration, validation, and evaluation. Two indirect and one direct NNI prediction methods using simple regression, stepwise multiple linear regression (SMLR) and random forest regression (RFR) were compared for N diagnosis and then integrated into N recommendation model. The results indicated that combining environmental and agronomic variables with crop sensor data improved the SMLR and RFR model performance by 1–16% and 9–40% over the corresponding models only using crop sensor data, respectively. The direct NNI prediction approach achieved slightly better N status diagnostic accuracy (areal agreement = 84% and Kappa statistics = 0.71) than indirect NNI prediction strategies based on plant N uptake and ΔN estimation (areal agreement = 81% and Kappa statistics = 0.67) or aboveground biomass and plant N uptake estimation (areal agreement = 77% and Kappa statistics = 0.58) across plot experiments and diverse on-farm conditions, based on multi-source data fusion with random forest regression models. About 82% of recommended N rates by the developed integrated in-season rice N diagnosis and recommendation model were within ±10 kg ha−1 of the measured economic optimum N rate across different varieties, environmental conditions and transplanting densities. Precision rice management based on in-season N diagnosis and recommendation decreased N rates and increased N partial factor productivity (PFPN) by 23% over regional optimum rice management, and significantly increased yield (7–11%) and PFPN (33–77%) over farmer's management. More studies are needed to develop in-season N diagnosis and recommendation strategies for applications across different regions and combine them with integrated precision rice management strategies for food security and sustainable development.

Sammendrag

Som en del av prosjektet Presisjonshektaren ved NIBIO Senter for Presisjonsjordbruk har det gjennom 2021 og 2022 blitt utført et demonstrasjonsforsøk hvor det ble prøvd ulike verktøy til jordkartlegging på et tilsynelatende homogent skifte gjennom en sesong. Denne rapporten oppsummerer dette arbeidet ved å beskrive resultatet fra kartleggingen og ser på sammenhenger mellom kartleggingsresultater og avlingsnivå. Resultatene viser at også innenfor et skifte som ser homogent ut, finnes det en god del variasjon på grunn av topografi (Figur 2) og forskjeller i jordegenskaper (Figur 8 - Figur 11) som kan føre til en betydelig variasjon i avling og proteininnhold (Figur 20 og Figur 21). Dette viser at dersom man skal kartlegge jorda som basis for presisjonstildeling av innsatsfaktorer, kan det være verdt å vurdere å ta jordprøver noe tettere enn den generelle anbefalingen. I dette forsøket viste høsteprøvene et spenn i kornavling tilsvarende 560-800 kg per daa minimum. Proteininnholdet varierte fra 11,2 til 13 %. Siden dette forsøket ble gjennomført som et ettårig forsøk uten gjentak, er det ikke mulig å konkludere med noen årsakssammenheng mellom de forskjellige variablene som er målt. Det er likevel observert interessante samvariasjoner mellom forskjellige typer kartlegging. Det kan være interessant å gjøre mer detaljerte forsøk for å undersøke disse nærmere på et senere tidspunkt. Ved konvensjonell, uniform dyrkingspraksis, vil hele skiftet behandles likt ved for eksempel gjødsling og jordarbeiding. Dette fører til at ikke alle områder blir behandlet etter behov og potensiale. Ved homogen gjødsling vil noen områder få mer gjødsel enn nødvendig. Dette reduserer utnyttelsen av innsatsfaktorene og kan føre til økt miljøbelastning og kostnader. Samtidig vil andre områder få for lite gjødsel, noe som kan begrense avlingspotensialet og produksjonseffektiviteten. Omfanget av variasjonen i dette forsøket illustrerer derfor behovet for stedspesifikk behandling. Med høye priser på innsatsfaktorer er det et stort innsparingspotensial i å behandle de ulike områdene ut fra behov og potensiale. Det finnes mange muligheter for kartlegging av åkeren, og gårdbrukeren møter mange ulike tilbud. Det er svært viktig at gårdbrukeren før hen benytter seg av et slikt tilbud ber om dokumentasjon på kvalitet og kalibrering for norske forhold. Ved omfattende kartlegging genereres også store mengder data som må ivaretas på en god måte for å kunne være til nytte for bonden. Som en del av arbeidet med Presisjonshektaren er det også utarbeidet en oversikt over forskjellige såkalte «Farm Management Information Systems» (FMIS) – informasjonsstyringssystemer for gårdsbruk (NIBIO Rapport – FMIS for norske gårdbrukere).) Et ettårig forsøk slik som det som er gjennomført her gir ikke muligheter for å konkludere om hvilken kartleggingsmetode som egner seg best. Resultatene og erfaringen fra det første året med forsøk på ‘Presisjonshektaren’ viser behovet for utvidet forskning på praktisk anvendelse av metodene for kartlegging for å prøve metodene gjennom flere sesonger og på ulike plasser for å også dekke variasjon i jordtype og klimatiske forhold. NIBIO driver med en rekke spennende forsøk innom presisionslandbruk i grensesnittet mellom agronomi, jordfag, plantedyrking og teknologi og dette blir også tema i nye forsøk i tida framover. Følg med på NIBIO’s aktivitet innenfor fagområdet: www.nibio.no https://precisionag.no/nb/hjem/