Publikasjoner
NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.
2021
Sammendrag
Det er ikke registrert sammendrag
Forfattere
Alexandre Tisserant Marjorie Morales Otávio Cavalett Adam O'Toole Simon Weldon Daniel Rasse Francesco CherubiniSammendrag
Limiting temperature rise below 2 °C requires large deployment of Negative Emission Technologies (NET) to capture and store atmospheric CO2. Compared to other types of NETs, biochar has emerged as a mature option to store carbon in soils while providing several co-benefits and limited trade-offs. Existing life-cycle assessment studies of biochar systems mostly focus on climate impacts from greenhouse gasses (GHGs), while other forcing agents, effects on soil emissions, other impact categories, and the implications of a large-scale national deployment are rarely jointly considered. Here, we consider all these aspects and quantify the environmental impacts of application to agricultural soils of biochar from forest residues available in Norway considering different scenarios (including mixing of biochar with synthetic fertilizers and bio-oil sequestration for long-term storage). All the biochar scenarios deliver negative emissions under a life-cycle perspective, ranging from -1.72 ± 0.45 tonnes CO2-eq. ha−1 yr−1 to -7.18 ± 0.67 tonnes CO2-eq. ha−1 yr−1 (when bio-oil is sequestered). Estimated negative emissions are robust to multiple climate metrics and a large range of uncertainties tested with a Monte-Carlo analysis. Co-benefits exist with crop yields, stratospheric ozone depletion and marine eutrophication, but potential trade-offs occur with tropospheric ozone formation, fine particulate formation, terrestrial acidification and ecotoxicity. At a national level, biochar has the potential to offset between 13% and 40% of the GHG emissions from the Norwegian agricultural sector. Overall, our study shows the importance of integrating emissions from the supply chain with those from agricultural soils to estimate mitigation potentials of biochar in specific regional contexts.
Sammendrag
Scots pine exhibits variations in ray anatomy, which are poorly understood. Some ray parenchyma cells develop thick and lignified cell walls before heartwood formation. We hypothesized that some stands and trees show high numbers of lignified and thick-walled parenchyma cells early in the sapwood. Therefore, a microscopic analysis of Scots pine sapwood from four different stands in Northern Europe was performed on Safranin — Astra blue-stained tangential micro sections from outer and inner sapwood areas. Significant differences in lignification and cell wall thickening of ray parenchyma cells were observed in the outer sapwood between all of the stands for the trees analyzed. On a single tree level, the relative lignification and cell wall thickening of ray parenchyma cells ranged from 4.3% to 74.3% in the outer sapwood. In the inner sapwood, lignification and cell wall thickening of ray parenchyma cells were more frequent. In some trees, however, the difference in lignification and cell wall thickening between inner and outer sapwood was small since early lignification, and cell wall thickening was already more common in the outer sapwood. Ray composition and number of rays per area were not significantly different within the studied material. However, only one Scottish tree had a significantly higher number of ray parenchyma cells per ray. The differences discovered in lignification and cell wall thickening in ray parenchyma cells early in the sapwood of Scots pine are relevant for wood utilization in general and impregnation treatments with protection agents in particular.
Sammendrag
Det er ikke registrert sammendrag
Forfattere
Matthias KoeslingSammendrag
Innføring i livsløpsanalyser. Hva er bærekraftig matproduksjon? Kan vi se om et produkt er mer eller mindre bærekraftig produsert?
Forfattere
Matthias KoeslingSammendrag
Det er ikke registrert sammendrag
Forfattere
Matthias KoeslingSammendrag
Det er ikke registrert sammendrag
Forfattere
Finn-Arne HaugenSammendrag
Det er ikke registrert sammendrag
Forfattere
Anna Birgitte MilfordSammendrag
Det er ikke registrert sammendrag
Forfattere
Trond MæhlumSammendrag
Det er ikke registrert sammendrag