Sammendrag

I 2022 ble det utført forsøk med skadedyrmidler i frukt og bær, og anlagt et forsøk i hodekål. I eple er det utført forsøk med ulike kjemiske og biologiske plantevernmidler mot blodlus (Eriosoma lanigerum), rognebærmøll (Argyresthia conjugella) og andre sommerfuglarter. I søtkirsebær er det utført et forsøk med feller med gjærlukt kombinert med farge for å øke fangsten og eventuelt også bekjempelse av kirsebærflue (Rhagoletis cerasi). Det er også utført forsøk med alternative midler mot bringebærbarkgallmygg (Resseliella theobaldi) i økologisk bringebær. Forsøket mot kålmøll i hodekål ble anlagt og delvis registrert, men ikke fullført på grunn av svakt angrep. Forsøkene og enkelte forsøksledd er finansiert av ulike prosjekter og finansieringskilder.

Til dokument

Sammendrag

The seed predator Argyresthia conjugella Zeller has rowan as its preferred host plant. In years of poor fruiting in rowan, it oviposits on apples. To improve the knowledge of this apple pest, rowanberries were collected from localities all over Norway from 1971 to 1985, and seed predators and their parasitoids were allowed to emerge for up to five years. Two species of seed predators, A. conjugella and Megastimus brevicaudis Ratzeburg, and seven species of parasitic Hymenoptera were common. The distribution of these species is shown on EIS (European Invertebrate Survey) maps of Norway. The biology of the parasitoids is summarized based on the published literature and their behavior during emergence. The tendency for delayed emergence, which is an indication of prolonged diapause, was more pronounced in M. brevicaudis than in A. conjugella, the former appearing in all five years. Five of the parasitoids also delayed their emergence, and three of them to a high degree, up to five years. Prolonged diapause must be taken into account in studies of rowanberry insect guilds.

Til dokument

Sammendrag

In Scandinavia, the bird cherry-oat aphid Rhopalosiphum padi overwinter as eggs on the bird cherry tree Prunus padus. Branches of P. padus were collected at the late February / early March from 17 locations in Norway over a three-year period. We found 3599 overwintering aphid eggs, 59.5% of which were dead. Further, a total of 879 overwintering fungus-killed cadavers were observed. These cadavers were found close to bud axils, where overwintering eggs were also usually attached. Cadavers were infected with either Zoophthora cf. aphidis or Entomophthora planchoniana. All the fungal-killed cadavers were filled with overwintering structures of Z. cf. aphidis (as resting spores) or E. planchoniana (as modified hyphal bodies). We found a significant negative correlation between eggs and cadavers per branch. However, both numbers of eggs and cadavers varied greatly between years and among tree locations. This is the first report of E. planchoniana overwintering in R. padi cadavers as modified hyphal bodies. We discuss whether P. padus may act as an inoculum reservoir for fungi infecting aphids in cereals in spring.

Til dokument

Sammendrag

BACKGROUND Integrated pest management (IPM) has a long history in fruit production and has become even more important with the implementation of the EU directive 2009/128/EC making IPM mandatory. In this study, we surveyed 30 apple orchards in Norway for 3 years (2016–2018) monitoring pest- and beneficial arthropods as well as evaluating fruit damage. We obtained growers’ diaries of pest management and used these data to study positive and negative correlations of pesticides with the different arthropod groups and damage due to pests. RESULTS IPM level had no significant effects on damage of harvested apples by arthropod pests. Furthermore, damage by arthropods was mainly caused by lepidopteran larvae, tortricids being especially important. The number of insecticide applications varied between 0 and 3 per year (mean 0.8), while acaricide applications varied between 0 and 1 per year (mean 0.06). Applications were often based on forecasts of important pest species such as the apple fruit moth (Argyresthia conjugella). Narrow-spectrum insecticides were commonly used against aphids and lepidopteran larvae, although broad-spectrum neonicotinoid (thiacloprid) insecticides were also applied. Anthocorid bugs and phytoseiid mites were the most abundant natural enemies in the studied orchards. However, we found large differences in abundance of various “beneficials” (e.g., lacewings, anthocorids, parasitic wasps) between eastern and western Norway. A low level of IPM negatively affected the abundance of spiders. CONCLUSION Lepidoptera was found to be the most important pest group in apple orchards. Insecticide use was overall low, but number of spray applications and use of broad-spectrum insecticides varied between growers and regions. IPM level did not predict the level of fruit damage by insects nor the abundance of important pests or most beneficial groups in an apple orchard. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

Sammendrag

Skadedyr: I 2021 er det utført forsøk med skadedyrmidler i eple, pære, plomme, prydrogn og jordbær. Her er det testet ulike midler mot blodlus, teger, plommevikler, rognebærmøll og bladlus. I tillegg er det utført forsøk for å vurdere om feromon-forvirring kan brukes som planteverntiltak mot viklere i eple. Det er også undersøkt forekomst av sviskade på epleblad etter bruk av vegetabilsk olje. Sjukdommer: Det er utført forsøk med soppmidler i bygg, løk, gulrot og eple. I bygg er det testet ulike varslingsmodeller i VIPS mot byggbrunflekk. I løk er det testet ulike beisemidler. I gulrot er det utført forsøk mot gropflekk og mot ulike lager- og bladflekksjukdommer. I eple er det gjort forsøk for å finne nye midler mot lagersjukdommer.

Til dokument

Sammendrag

The predatory mite Amblyseius andersoni (Acari: Phytoseiidae) is wanted as a new biocontrol product in Norwegian horticulture. The species was never found by Torgeir Edland, who surveyed the Norwegian fauna of phytoseiids for more than 20 years. Since A. andersoni has been found on blackberry in both Sweden and Denmark, we did a specific search for it in wild blackberry (Rubus tomentosus, sensu lato) in 2016. Almost 1500 potential phytoseiids were found on about 550 blackberry leaves collected near Sandefjord, Grimstad, Fredrikstad, and Ås. More than a third of these were examined at the Laboratory of Acarology (University of São Paulo, Brazil). Amblyseius andersoni was not found, but at least 10 other species of Phytoseiidae, all previously reported from Norway, were present. Thus, our survey supports earlier ones, indicating that A. andersoni is not naturally occurring in Norway. We conclude with some suggestions for an extended search.

Sammendrag

We studied the effect of three Pandora neoaphidis isolates from one Sitobion avenae population, three temperatures, and two aphid species namely S. avenae and Rhopalosiphum padi on (i) aphid mortality, (ii) time needed to kill aphids, and (iii) aphid average daily and lifetime fecundity. A total of 38% of S. avenae and 7% of R. padi died and supported fungus sporulation. S. avenae was killed 30% faster than R. padi. Average daily fecundity was negatively affected only in S. avenae inoculated with, but not killed by, P. neoaphidis. Nevertheless, lifetime fecundity of both aphid species inoculated and sporulating with P. neoaphidis was halved compared to lifetime fecundity of surviving aphids in the control. Increased temperature resulted in higher mortality rates but did not consistently affect lethal time or fecundity. Results suggest that (i) temperature effects on virulence differ between isolates, even when obtained within the same host population, and (ii) even though an isolate does not kill a host it may reduce its fecundity. Our findings are important for the understanding of P. neoaphidis epizootiology and for use in pest-natural enemy modelling.

Sammendrag

Aphids in cereals are an important problem in Europe. Entomopathogenic fungi in the Phylum Entomophthoromycota are among their natural enemies. Under certain conditions, they can cause epizootic events and control pest aphid populations. This epizootic development is affected by many abiotic and biotic factors such as aphid species and their host plant (including weeds within the crop), fungal species and isolates, and temperature. Studies from Denmark, UK, Slovakia and suggest that the genus Pandora is the most prevalent fungal pathogen of the English grain aphid (Sitobion avenae). Which fungal species that is the most prevalent in populations of the other important aphid species in cereals in Europe, the Bird cherry-oat aphid (Rhopalosiphum padi), is less clear. We chose, however, to use Pandora to assess the biological control potential of Entomophthoromycota against aphids in cereals and to produce data that might be used in a pest-warning model incorporating the effect of this natural enemy. This was done by conducting laboratory studies on the virulence of two Pandora isolates (collected in the same field) on R. padi and Myzus persicae at three temperatures (12, 15 and 18◦C). M. persicae is a polyphagous aphid that may be present on weeds. It can be an alternative host for Pandora and hence might also affect the epidemic development of Pandora in aphids that are cereal pests. Our preliminary results show that R. padi is more resistant to the tested Pandora isolates than M. persicae. The two Pandora isolates had different virulence in the two aphid species tested. The temperature did not influence the virulence.

Sammendrag

This contribution demonstrates an example of experimental automatic image analysis to detect spores prepared on microscope slides derived from trapping. The application is to monitor aerial spore counts of the entomopathogenic fungus Pandora neoaphidis which may serve as a biological control agent for aphids. Automatic detection of such spores can therefore play a role in plant protection. The present approach for such detection is a modification of traditional manual microscopy of prepared slides, where autonomous image recording precedes computerised image analysis. The purpose of the present image analysis is to support human visual inspection of imagery data – not to replace it. The workflow has three components: • Preparation of slides for microscopy. • Image recording. • Computerised image processing where the initial part is, as usual, segmentation depending on the actual data product. Then comes identification of blobs, calculation of principal axes of blobs, symmetry operations and projection on a three parameter egg shape space.

Til dokument

Sammendrag

Tick-borne diseases, such as anaplasmosis and babesiosis, are of major concern for Norwegian sheep farmers. Ticks can be controlled on and off the host, usually with the long-term, high-rotation use of chemicals. Fungal pathogens, predatory mites and ants are thought to be important tick killers in nature. However, the prevalence and diversity of predatory mites in tick habitats has barely been evaluated. It is known that most soil mite species of the cohort Gamasina (order Mesostigmata) are predators. Until now, 220 mesostigmatid species have been reported from Norway, most of them belonging to the Gamasina. One of the first recommended steps in a biological control program involves the determination of the fauna in the pest habitat. The objective of this study was to determine the groups of gamasines co-occurring with I. ricinus in sheep grazing areas in Isfjorden and Tingvoll in Western Norway. A total of 2,900 gamasines of 12 families was collected. The most numerous families were Parasitidae (46.9%) and Veigaiidae (25.7%), whereas the most diverse families were Laelapidae, Macrochelidae, Parasitidae and Zerconidae. Our results showed that the tick density was significantly related only to locality, elevation and rainfall. Differences in the prevailing environmental conditions resulted in more outstanding differences between Gamasina abundances than diversities. Based on our present knowledge of the potential of different gamasine groups as biological control agents, the results suggested that laelapid mites should be among the priority groups to be further evaluated for their role in the natural control of I. ricinus in Norway.

Til dokument

Sammendrag

A controlled climatic chamber microcosm experiment was conducted to examine how light affects the hourly sporulation pattern of the beneficial mite pathogenic fungus Neozygites floridana during a 24 h cyclus over a period of eight consecutive days. This was done by inoculating two-spotted spider mites (Tetranychus urticae) with N. floridana and placing them on strawberry plants for death and sporulation. Spore (primary conidia) discharge was observed by using a spore trap. Two light regimes were tested: Plant growth light of 150 μmol m−2 s−1 for 12 h supplied by high pressure sodium lamps (HPS), followed by either; (i) 4 h of 50 μmol m−2 s−1 light with similar HPS lamps followed by 8 h darkness (full HPS light + reduced HPS light + darkness) or (ii) 4 h of 50 μmol m−2 s−1 red light followed by 8 h darkness (full HPS light + red light + darkness). A clear difference in hourly primary conidia discharge pattern between the two different light treatments was seen and a significant interaction effect between light treatment and hour in day during the 24 h cycle was observed. The primary conidia discharge peak for treatment (ii) that included red light was mainly reached within the red light hours (19:00–23:00) and the dark hours (23:00–07:00). The primary conidia discharge peak for treatment (i) with HPS light only was mainly reached within the dark hours (23:00–07:00).

Sammendrag

The vine weevil, Othiorynchus sulcatus, is a serious pest in strawberries and biological control methods are needed to combat this pest. Formulations of the insect pathogenic fungus Metarhizium anisopliae is registered for use against Otiorhynchus spp. in several countries but no fungal control agents are avilable for control of O. sulcatus in Norway. All developmental stages of Otiorhynchus spp. are susceptible to virulent insect pathogenic fungal species, but best control has been achieved against the larvae (Moorhouse et al. 1992). A number of studies have shown that M. anisopliae and Beauveria bassiana have good potential against Otiorhynchus spp. (Cross et al. 2001). In field grown strawberries, good control with Metarhizium has been reported when environmental conditions for the fungus are favourable (Oakley 1994). Temperatures in excess of 15oC are required for good control by most fungal isolates. Low temperature is therefore a major restricting factor for use of fungi outdoors (Gillespie et al. 1989, Soares et al. 1983). Isolates with low temperature optimums could therefore be well suited for field conditions in Northern Europe, where soil temperatures at the time when most larvae are found in the soil in autumn are 10-12oC. Norwegian M. anisopliae and B. bassiana isolates have shown promising results against O. sulcatus larvae at low temperatures in laboratory bioassays (Hjeljord & Klingen 2005). One of the Norwegian M. anisopliae isolates has also shown good competition with other soil fungi in laboratory experiments (Hjeljord & Meadow 2005). In addition to being cold tolerant, rhizosphere competence is important for fungal control agents that are used to control root feeding pests. "Rhizosphere competence" has been defined when considering biological control agents as "the ability of a microorganism, applied by seed treatment, to colonize the rhizosphere of developing roots" (Baker 1991). In this study we therefore aimed at testing the survival and rhizosphere competence of two different cold active Norwegian isolates (M. anisopliae isolate NCRI 250/02 and B. bassiana NCRI 12/96) in a semi field experiment in Norway. These were compared with the commercially avilable M. anisopliae isolate Ma43 originating from Austria (the isolate is also known to have many other names (Eilenberg 2008)). The study was conducted by estimating fungal concentrations in the bulk and rhizosphere soil surrounding the strawberry plant roots by counting colony forming unists (CFUs). The highest numbers of B. bassiana NCRI 12/96 CFUs were seen in the rhizosphere at 1.87x109 per liter soil 3 months after application. The highest numbers of M. anisopliae NCRI 250/02 CFUs were seen in the rhizosphere at 2.41x109 per liter soil 1 year after application. Numbers of CFUs for the M. ansiopliae Ma43 CFUs were generally lower than for the Norwegian isolates, but also for this isolate a higher fungal concentration was found in the rihzosphere soil than in the bulk soil.

Sammendrag

The vine weevil, Othiorynchus sulcatus, is a serious pest in strawberries in Norway and biological control methods are needed to combat this pest. In this study, the rhizosphere competence of two cold active Norwegian fungal isolates (Metarhizium anisopliae isolate NCRI 250/02 and Beauveria bassiana NCRI 12/96) and the well known Ma43 originating from Austria were tested. This was done by estimating fungal concentrations in the bulk and rhizosphere soil surrounding the strawberry plant roots by counting colony forming unists (CFUs). The highest numbers of B. bassiana NCRI 12/96 CFUs were seen in the rhizosphere at 1.87x109 per liter soil 3 months after application. The highest numbers of M. anisopliae NCRI 250/02 CFUs were seen in the rhizosphere at 2.41x109 per liter soil 1 year after application. Numbers of CFUs for the M. ansiopliae Ma43 CFUs were generally lower than for the Norwegian isolates, but also for this isolate a higher fungal concentration was found in the rihzosphere soil than in the bulk soil.

Sammendrag

Neozygites floridana is a fungus in the order Entomophthorales that infects and kills the two-spotted spider mite, Tetranychus urticae. The fungus is therefore of interest in the biological control of T. urticae. To obtain information that might help in the use of this fungus under practical conditions in strawberries and cucumbers we have tried to answer the following questions in a series of studies: 1) When, and at what infection levels does N. floridana occur in T. urticae populations in field grown strawberries in Norway? 2) How does N. floridana survive harsh climatic conditions (i.e winter) in Norway? 3) Where do N. floridana infected T. urticae move and sporulate on a plant? 4) How can N. floridana be inoculated in augmentative microbial control of T. urticae? Results show that the N. floridana infection level varies considerably throughout a season. T. urticae killed by N. floridana was found to sporulate surprisingly early in the season (first observation March 18) and infection early in the season is important for a good control of T. urticae. N. floridana was observed to over-winter as hyphal bodies in hibernating T. urticae females throughout the winter. Cadavers with resting spores were found from October to the end of January only. Cadavers then probably disintegrated, and resting spores were left on leaves, soil, etc. In a bioassay where a Norwegian N. floridana isolate was tested for numbers and distance of spores thrown at three different temperatures relevant to Norwegian conditions (13o, 18o, 23o C), results show that the highest numbers of spores (1886 and 1733 per cadaver) were thrown at 13o and 18o compared to 23o C (1302 per cadaver). Spores were thrown at the same distance (up to about 6 mm) at all three temperatures. These results show that the fungus may be a promising agent at temperatures relevant for strawberry production in countries located in Northern areas. Our attempt to inoculate N. floridana artificially in a strawberry field and also in greenhouse cucumbers has not been successful yet, but we are working to improve the methods in a new project titled "BERRYSYS -A system approach to biocontrol in organic and integrated strawberry production".

Til dokument

Sammendrag

To evaluate overwintering strategies of the fungus Neozygites floridana, an important natural enemy of Tetranychus urticae, hibernating T. urticae females were investigated for the presence of fungal structures throughout one winter (October 12, 2006 to February 19, 2007) in field-grown strawberries in a cold climate in Norway ( min. ambient temp -15.3 degrees C). Neozygites floridana was present as hyphal bodies inside live, hibernating females in T. urticae populations throughout the sampling period. The lowest percentages of hibernating females with hyphal bodies were found at the two first dates of sampling at 5.5 and 0% on October 12 and 19, respectively. The prevalence then increased and peaked at 54.4% on January 14. Resting spores (immature) were also found in live hibernating females at some dates, but at lower prevalence than for hyphal bodies and predominantly only until November 8. Prevalence of resting spores in live hibernating females ranged from 2.5 to 13.8%. Total number of T. urticae was also recorded, and most mites of all four categories (nymphs, males, non-hibernating and hibernating females) were found at the first sampling date. At this date non-hibernating females were the most abundant. A sharp decrease in non-hibernating females, nymphs and males was, however, seen from mid-October to mid-November; also numbers of hibernating females decreased, but not as fast. The relative abundance of hibernating females compared to non-hibernating females increased from 32.2% at the first collection (October 12) to 97.7% at the last collection (February 2). This study confirms that N.floridana survives the winter as a semi-latent hyphal body infection, protected inside live hibernating females. It is therefore ready to develop and sporulate as soon as climatic conditions permit, resulting in early season infection of T. urticae.

Sammendrag

In a pilot field study conducted in an apple orchard in Hardanger (Western Norway) in two succesive years both Beauveria bassiana and Metarhizium anisopliae were applied to apple trees just after hatching of mirid nymphs in spring. Both predatory, omnivorous and principally plant-pathogenic species of mirids were collected, and all groups of species were infected by B. bassiana or M. ansiopliae in treated plots. B. bassiana and M. anisopliae were also found on some individuals in non treated control plots the second year. M. anisopliae was more predominant in 2006, B. bassiana in 2007. Mirids were also observed for natural occurrence of parasitoids, and parasitoids were found both years.

Sammendrag

Den middpatogene soppen Neozygites floridana er en viktig naturlig fiende for veksthusspinn - midden, Tetranychus urticae. Plantevernmidler, spesielt soppmidler, kan hemme denne nyttesoppen. Dette bør det tas hensyn til når en sprøyter mot soppsykdommer i jordbær og i andre kulturer hvor veksthusspinnmidden er et problematisk skadedyr.