Publikasjoner
NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.
2023
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Forfattere
Isabell Eischeid Jesper Madsen Rolf Anker Ims Bart A. Nolet Åshild Ønvik Pedersen Kees H.T. Schreven Eeva Marjatta Soininen Nigel Gilles Yoccoz Virve RavolainenSammendrag
Arctic tundra vegetation is affected by rapid climatic change and fluctuating herbivore population sizes. Broad-billed geese, after their arrival in spring, feed intensively on belowground rhizomes, thereby disturbing soil, mosses, and vascular plant vegetation. Understanding of how springtime snowmelt patterns drive goose behavior is thus key to better predict the state of Arctic tundra ecosystems. Here, we analyzed how snowmelt progression affected springtime habitat selection and vegetation disturbance by pink-footed geese (Anser brachyrhynchus) in Svalbard during 2019. Our analysis, based on GPS telemetry data and field observations of geese, plot-based assessments of signs of vegetation disturbance, and drone and satellite images, covered two spatial scales (fine scale: extent 0.3 km2, resolution 5 cm; valley scale: extent 30 km2, resolution 10 m). We show that pink-footed goose habitat selection and signs of vegetation disturbance were correlated during the spring pre-breeding period; disturbances were most prevalent in the moss tundra vegetation class and areas free from snow early in the season. The results were consistent across the spatial scales and methods (GPS telemetry and field observations). We estimated that 23.4% of moss tundra and 11.2% of dwarf-shrub heath vegetation in the valley showed signs of disturbance by pink-footed geese during the study period. This study demonstrates that aerial imagery and telemetry can provide data to detect disturbance hotspots caused by pink-footed geese. Our study provides empirical evidence to general notions about implications of climate change and snow season changes that include increased variability in precipitation.
Sammendrag
Det er ikke registrert sammendrag
Forfattere
Ji Liu Yi Wang Yong Li Josep Peñuelas Ying Zhao Jordi Sardans Doerthe Tetzlaff Jian Liu Xinliang Liu Hongzhao Yuan Yanyan Li Ji Chen Jinshui WuSammendrag
Whether and how to synchronously regulate stream water nitrogen (N) and phosphorus (P) concentrations and ratios is a major challenge for sustainable aquatic functions. Soil carbon (C):N:P ratios influence soil N and P stocks and biogeochemical processes that elicit subsequent substantial impacts on stream water N and P concentrations and ratios. Therefore, bridging soil and stream water with ecological stoichiometry is one of the most promising technologies for improving stream water quality. Here, we quantified the ecological stoichiometry of soil and stream water relationships across nine catchments. Soil C:P ratio was the main driver of water quality, showing negative correlations with stream water N and P concentrations, and positive correlations with the N:P ratio in P-limited catchments. We revealed that soil C:P ratios higher than 97.8 mol mol−1 are required to achieve the simultaneous regulation of stream water N and P concentrations below the eutrophication threshold and make algal growth P-limited. Furthermore, we found that the relationships between catchment landscape and soil ecological stoichiometry likely provided practical options for regulating soil ecological stoichiometry. Our work highlights that soil ecological stoichiometry can effectively indicate the amount and proportion of soil N and P losses, and can be intervened through rational landscape planning to achieve sustainable aquatic ecosystems in catchments.
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Forfattere
Julia Le Noë Stefano Manzoni Rose Abramoff Tobias Bölscher Elisa Bruni Rémi Cardinael Philippe Ciais Claire Chenu Hugues Clivot Delphine Derrien Fabien Ferchaud Patricia Garnier Daniel Goll Gwenaëlle Lashermes Manuel Martin Daniel Rasse Frédéric Rees Julien Sainte-Marie Elodie Salmon Marcus Schiedung Josh Schimel William Wieder Samuel Abiven Pierre Barré Lauric Cécillon Bertrand GuenetSammendrag
Numerical models are crucial to understand and/or predict past and future soil organic carbon dynamics. For those models aiming at prediction, validation is a critical step to gain confidence in projections. With a comprehensive review of ~250 models, we assess how models are validated depending on their objectives and features, discuss how validation of predictive models can be improved. We find a critical lack of independent validation using observed time series. Conducting such validations should be a priority to improve the model reliability. Approximately 60% of the models we analysed are not designed for predictions, but rather for conceptual understanding of soil processes. These models provide important insights by identifying key processes and alternative formalisms that can be relevant for predictive models. We argue that combining independent validation based on observed time series and improved information flow between predictive and conceptual models will increase reliability in predictions.
Forfattere
Salvatore Raniolo Laura Maretto Elena Benedetti del Rio Sylvie Cournut Maeva Cremilleux Benjamin Nowak Audrey Michaud Vibeke Lind Giuseppe Concheri Piergiorgio Stevanato Andrea Squartini Maurizio Ramazin Enrico SturaroSammendrag
Grasslands represent key functional ecosystems due to their global contribution to macronutrients cycling and their role as reservoirs of microbial diversity. The strategic importance of these habitats rests on their involvement in carbon and nitrogen fluxes from the atmosphere to the soil, while at the same time offering extensive sites for livestock rearing. In this study the management type, differentiated in pasture or meadow, was investigated as a variable for its possible effects on overall bacterial diversity and specific genes related to functional guilds. Its contribution was compared to that of other variables such as region, soil pH, and soil organic carbon, to rank their respective hierarchies in shaping microbial community structure. A latitudinal gradient across the European continent was studied, with three sampling groups located in Norway, France, and Northern Italy. The applied methods involved 16S DNA metabarcoding for taxonomic classification and determination of the relative abundance of the bacterial component, and quantitative PCR for the genetic determinants of bacterial and archaeal nitrification, intermediate or terminal denitrification, and nitrogen fixation. Results indicated that soil pH exerted the dominant role, affecting high taxonomy ranks and functions, along with organic carbon and region, with whom it partly covaried. In contrast, management type had no significant influence on microbial community structure and quantitative counts of functional genes. This suggests an ecological equivalence between the impacts of pasture and meadow practices, which are both perturbations that share the aspect of vegetation withdrawal by browsing or cutting, respectively.