Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2022

Til dokument

Sammendrag

An intensive planting of ‘Celina’ pears on quince ‘Adams’ rootstock was established in May 2015 at NIBIO Ullensvang, western Norway. Five training systems (super spindles, trees with two leaders parallel to the row directions, slender spindles, and V-hedges of trees with 2 or with 4 leaders) were evaluated. Row distance was 3.5 m, and planting distance was 1.0 m except for super spindle trees and V-hedge with two leaders (0.5 m). Cultivars ‘Anna’ and ‘Fritjof’, used as pollinizers, were evenly distributed in the orchard and had good overlapping in flowering time. To get a faster establishment, the trees were headed back in winter 2016 when the formation of the different training systems was started. The first fruits were harvested in 2018. Due to unfavorable pollination conditions, fruit set in 2018 was very low. Average yields varied between 2.7 t ha‑1 for the super spindle trees to 10 t ha‑1 for the spindle trees. As a result of ample flowering and optimum pollination conditions, fruit set in 2019 was excellent, and average yields varied between 17 t ha‑1 for the 2-leader trees planted parallel to the row direction to 47 t ha‑1 for the 2-leader V-hedge trees. Fruit size was inversely related to fruit number per tree. Fruit weight depended on crop load per canopy volume and varied between 130 g for the two smallest trees (super spindles and 2-leader V-hedge system) and 180 g for the 2-leader trees planted parallel to the row direction. Soluble solid contents were high (11% on average), with no differences between training systems. After three cropping years, the spindle trees and V-hedge with 4 leaders per tree were the most productive systems per tree. However, the super spindle and 2-leader V-hedge system with twice the number of trees were the most productive systems per hectare.

Til dokument

Sammendrag

Control of grey mould, caused by Botrytis spp., is a major challenge in open field strawberry production. Botrytis was isolated from plant parts collected from 19 perennial strawberry fields with suspected fungicide resistance in the Agder region of Norway in 2016. Resistance to boscalid, pyraclostrobin and fenhexamid was high and found in 89.1%, 86.0% and 65.4% of conidia samples, respectively. Multiple fungicide resistance was common; 69.6% of conidia samples exhibited resistance to three or more fungicides. Botrytis group S and B. cinerea sensu stricto isolates were obtained from 19 and 16 fields, respectively. The sdhB, cytb, erg27 and mrr1 genes of a selection of isolates were examined for the presence of mutations known to confer fungicide resistance to boscalid, pyraclostrobin, fenhexamid and pyrimethanil plus fludioxonil, respectively. Allele-specific PCR assays were developed for efficient detection of resistance-conferring mutations in cytb. Among B. cinerea isolates, 84.7%, 86.3% and 61.3% had resistance-conferring mutations in sdhB, cytb and erg27, respectively. A triplet deletion in mrr1, resulting in ΔL497, commonly associated with the multidrug resistance phenotype MDR1h, was detected in 29.2% of Botrytis group S isolates. High frequencies of resistance to several fungicides were also detected in Botrytis from both imported and domestically produced strawberry transplants. Fungicide resistance frequencies were not different among fields grouped by level of grey mould problem assessed by growers, indicating factors other than fungicide resistance contributed to control failure, a fact that has important implications for future management of grey mould.

Til dokument

Sammendrag

Apple cultivars are one of the main factors setting the composition of bioactive compounds in apples and the quality of the fruit. However, research has been providing increasing amounts of data on the influence of rootstocks on the variations in the composition of bioactive compounds in apples. The aim of the study was to determine the influence of rootstocks on the changes in the qualitative and quantitative composition of phenolic compounds and their antioxidant activity in vitro in apple flesh and peel. HPLC analyses of phenolic compounds in apple samples were performed. The rootstock–scion combination had a significant effect on the composition and antioxidant activity of phenolic compounds in apple samples. Depending on the rootstock, the total content of phenolic compounds in apple flesh of the ‘Galaval’ cultivar could vary by 2.9 times, and in the peel by up to 90%. The genotype of the rootstock resulted in the highest variation in total flavan-3-ol content in apple flesh—by as much as 4.3 times—while the total content of flavonols varied by 2.1 times. In apple peel, on the contrary, the greatest variation was recorded for the total flavonol content (by 4.4 times), and the total flavan-3-ol content varied the least (by 1.8 times). A proper match of a cultivar and a rootstock can program a fruit tree to grow larger amounts of higher-quality, antioxidant-rich, and high-nutrition-value fruit.

Til dokument

Sammendrag

Barnyard grass [Echinochloa crus-galli (L.) Beauv] is a competitive C4 weed species that is widely distributed throughout the world. Although it originated in warm climatic conditions, currently, it is found in Europe as far north as Norway. This study aimed to compare the phenological development of plants from different climatic conditions in varying environmental conditions. To represent the contrasting climatic conditions within Europe, seeds were collected in Norway and Italy, and distributed to the study participants, to be sown at 10 different sites as two common populations. In addition to that, seeds of two to three local populations were collected near each of the sites. The development of the plants was monitored in a pot experiment set up under field conditions. The time to reach heading in the first year of the experiment was 77.6% faster (ranging from 45.9 to 98.3% on average) in the Norwegian than in the Italian population. However, in the leaf development stage, the difference between the common populations was smaller by, 23.5% on average (0–46.7%) and was mostly not significant. Our results indicate that different E. crus-galli ecotypes, characterized by differences in their phenological development, evolved within the distribution area of this species in Europe. However, the early development of the plants progressed with negligible differences between populations. The findings reported here can be used to adapt existing models from one region to regions with different climatic conditions for use in decision support systems and for research into plant population dynamics.

Til dokument

Sammendrag

Digestate, a by-product from anaerobic digestion of organic materials such as animal manure, is considered a suitable plant fertilizer. However, due to its bulkiness and low economic value, it is costly to transport over long distances and store for long periods. Refinement processes to valorize digestate and facilitate its handling as a fertilizer include precipitation of phosphorus-rich mineral compounds, such as struvite and calcium phosphates, membrane filtration methods that concentrate plant nutrients in organic products, and carbonization processes. However, phosphorus retention efficiency in output products from these processes can vary considerably depending on technological settings and characteristics of the digestate feedstock. The effects of phosphorus in plant fertilizers (including those analogous or comparable to refined digestate products) on agronomic productivity have been evaluated in multiple experiments. In this review, we synthesized knowledge about different refinement methods for manure-based digestate as a means to produce phosphorus fertilizers, thereby providing the potential to increase phosphorus retention in the food production chain, by combining information about phosphorus flows in digestate refinement studies and agronomic fertilizer studies. It was also sought to identify the range, uncertainty, and potential retention efficiency by agricultural crops of the original phosphorus amount in manure-based digestate. Refinement chains with solid/wet phase separation followed by struvite or calcium phosphate precipitation or membrane filtration of the wet phase and carbonization treatments of the solid phase were included. Several methods with high potential to extract phosphorus from manure-based wet phase digestate in such a way that it could be used as an efficient plant fertilizer were identified, with struvite precipitation being the most promising method. Synthesis of results from digestate refinement studies and agronomic fertilizer experiments did not support the hypothesis that solid/wet separation followed by struvite precipitation, or any other refinement combination, results in higher phosphorus retention than found for unrefined digestate. Further studies are needed on the use of the phosphorus in the solid phase digestate, primarily on phosphorus-rich soils representative of animal-dense regions, to increase understanding of the role of digestate refinement (particularly struvite precipitation) in phosphorus recycling in agricultural systems.

Til dokument

Sammendrag

Phycoerythrin (PE) is a photosensitive red pigment from phycobiliprotein family predominantly present in the red algae. The concentration of PE depends on photon flux density (PFD) and the quality of light absorbed by the algae tissue. This necessitates robust techniques to extract PE from the embedded cell-wall matrix of the algal frond. Similarly, PE is sensitive to various factors which influence its stability and purity of PE. The PE is extracted from Red algae through different extraction techniques. This review explores an integrative approach of fractionating PE for the scaling-up process and commercialization. The mechanism for stabilizing PE pigment in food was critically evaluated for further retaining this pigment within the food system. The challenges and possibilities of employing efficient extraction for industrial adoption are meticulously estimated. The techniques involved in the sustainable way of extracting PE pigments improved at a laboratory scale in the past decade. Although, the complexity of industrial-scale biorefining was found to be a bottleneck. The extraction of PE using benign chemicals would be safe for food applications to promote health benefits. The precise selection of encapsulation technique with enhanced sensitivity and selectivity of the membrane would bring better stability of PE in the food matrix.