Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2018

Sammendrag

Plants are exposed to various pathogens in their environment and have developed immune systems with multiple layers of defence to fight-back. However, often pathogens overcome the resistance barriers, infect the plants to cause the disease. Pathogens that cause diseases on economically important crop plants like strawberry incur huge losses to the agriculture industry. For example, The 2016 outbreak of strawberry grey mould (Botrytis cinerea) in Norway caused up to 95% crop losses. Outbreaks like this underline the importance of developing novel and sustainable tools to combat plant diseases, for example by increasing the plants’ natural disease resistance. Priming plant defences using chemical elicitors may be effective in providing the enhanced resistance against multiple pathogens. We have used β-aminobutyric acid (BABA) as a chemical priming agent to induce resistance in Fragaria vesca against Botrytis cinerea. Effects of BABA on disease progression and defence responses of Fragaria are being characterized using molecular tools like RNAseq, RT-PCR and ChIP. As priming chemicals may induce an epigenetic memory in treated plants, we also plan to study the histone methylation patterns in primed plants and the genes that are regulated. Our long-term aim is to understand the duration of the epigenetic memory and its cross-generational transmission to the progeny in Fragaria. Our results will help guide various crop protection strategies in addition to providing new insights to develop novel tools for plant disease management.

Sammendrag

Pathogenic soft rot Enterobacteriaceae (SRE) belonging to the genera Pectobacterium and Dickeya cause diseases in potato and numerous other crops. Seed potatoes are the most important source of infection, but how pathogen-free tubers initially become infected remains an enigma. Since the 1920s, insects have been hypothesized to contribute to SRE transmission. To validate this hypothesis and to map the insect species potentially involved in SRE dispersal, we have analyzed the occurrence of SRE in insects recovered from potato fields over a period of 2 years. Twenty-eight yellow sticky traps were set up in 10 potato fields throughout Norway to attract and trap insects. Total DNA recovered from over 2,000 randomly chosen trapped insects was tested for SRE, using a specific quantitative PCR (qPCR) TaqMan assay, and insects that tested positive were identified by DNA barcoding. Although the occurrence of SRE-carrying insects varied, they were found in all the tested fields. While Delia species were dominant among the insects that carried the largest amount of SRE, more than 80 other SRE-carrying insect species were identified, and they had different levels of abundance. Additionally, the occurrence of SRE in three laboratory-reared insect species was analyzed, and this suggested that SRE are natural members of some insect microbiomes, with herbivorous Delia floralis carrying more SRE than the cabbage moth (Plutella xylostella) and carnivorous green lacewing larvae (Chrysoperla carnea). In summary, the high proportion, variety, and ubiquity of insects that carried SRE show the need to address this source of the pathogens to reduce the initial infection of seed material.

Til dokument

Sammendrag

The oomycete Phytophthora infestans, the cause of late blight, is one of the most important potato pathogens. During infection, it secretes effector proteins that manipulate host cell function, thus contributing to pathogenicity. This study examines sequence differentiation of two P. infestans effectors from 91 isolates collected in Poland and Norway and five reference isolates. A gene encoding the Avr-vnt1 effector, recognized by the potato Rpi-phu1 resistance gene product, is conserved. In contrast, the second effector, AvrSmira1 recognized by Rpi-Smira1, is highly diverse. Both effectors contain positively selected amino acids. A majority of the polymorphisms and all selected sites are located in the effector C-terminal region, which is responsible for their function inside host cells. Hence it is concluded that they are associated with a response to diversified target protein or recognition avoidance. Diversification of the AvrSmira1 effector sequences, which existed prior to the large-scale cultivation of plants containing the Rpi-Smira1 gene, may reduce the predicted durability of resistance provided by this gene. Although no isolates virulent to plants with the Rpi-phu1 gene were found, the corresponding Avr-vnt1 effector has undergone selection, providing evidence for an ongoing ‘arms race’ between the host and pathogen. Both genes remain valuable components for resistance gene pyramiding.

Til dokument

Sammendrag

The oomycete pathogen Phytophthora cactorum causes crown rot, a major disease of cultivated strawberry. We report the draft genome of P. cactorum isolate 10300, isolated from symptomatic Fragaria x ananassa tissue. Our analysis revealed that there are a large number of genes encoding putative secreted effectors in the genome, including nearly 200 RxLR domain containing effectors, 77 Crinklers (CRN) grouped into 38 families, and numerous apoplastic effectors, such as phytotoxins (PcF proteins) and necrosis inducing proteins. As in other Phytophthora species, the genomic environment of many RxLR and CRN genes differed from core eukaryotic genes, a hallmark of the two-speed genome. We found genes homologous to known Phytophthora infestans avirulence genes including Avr1, Avr3b, Avr4, Avrblb1 and AvrSmira2 indicating effector sequence conservation between Phytophthora species of clade 1a and clade 1c. The reported P. cactorum genome sequence and associated annotations represent a comprehensive resource for avirulence gene discovery in other Phytophthora species from clade 1 and, will facilitate effector informed breeding strategies in other crops.

Sammendrag

The apple fruit moth Argyresthia conjugella (Lepidoptera, Yponomeutidae) is a seed predator of rowan (Sorbus aucuparia) and is distributed in Europe and Asia. In Fennoscandia (Finland, Norway and Sweden), rowan fruit production is low every 2–4 years, and apple (Malus domestica) functions as an alternative host, resulting in economic loss in apple crops in inter-mast years. We have used Illumina MiSeq sequencing to identify a set of 19 novel tetra-nucleotide short tandem repeats (STRs) in Argyresthia conjugella. Such motifs are recommended for genetic monitoring, which may help to determine the eco-evolutionary processes acting on this pest insect. The 19 STRs were optimized and amplified into five multiplex PCR reactions. We tested individuals collected from Norway and Sweden (n = 64), and detected very high genetic variation (average 13.6 alleles, He = 0.75) compared to most other Lepidoptera species studied so far. Spatial genetic differentiation was low and gene flow was high in the test populations, although two non-spatial clusters could be detected. We conclude that this set of genetic markers may be a useful resource for population genetic monitoring of this economical important insect species.

Til dokument

Sammendrag

Large terrestrial carnivores can sometimes display strong family bonds affecting the spatial distribution of related individuals. We studied the spatial genetic relatedness and family structure of female Eurasian lynx, continuously distributed in southern Finland. We hypothesized that closely related females form matrilineal assemblages, clustering together with relatives living in the neighboring areas. We evaluated this hypothesis using tissue samples of 133 legally harvested female lynx (from year 2007 to 2015), genotyped with 23 microsatellite markers, and tested for possible spatial genetic family structure using a combination of Bayesian clustering, spatial autocor ‐ relation, and forensic genetic parentage analysis. The study population had three potential family genetic clusters, with a high degree of admixture and geographic overlap, and showed a weak but significant negative relationship between pairwise genetic and geographic distance. Moreover, parentage analysis indicated that 64% of the females had one or more close relatives (sister, mother, or daughter) within the study population. Individuals identified as close kin consistently assigned to the same putative family genetic cluster. They also were sampled closer geographically than females on average, although variation was large. Our results support the possibility that Eurasian lynx forms matrilineal assemblages, and comparisons with males are now required to further assess this hypothesis.

Til dokument

Sammendrag

1. Large-scale pattern-oriented approaches are useful to understand the multi-level processes that shape the genetic structure of a population. Matching the scales of patterns and putative processes is both a key to success and a challenge. 2. We have developed a simple statistical approach, based on variogram analysis, that identifies multiple spatial scales where the population pattern, in this case genetic structure, have highest expression (i.e. the spatial scales at which the strength of patterning of isolation-by-distance (IBD) residual variance reached maximum) from empirical data and, thus, at which scales it should be studied relative to the underlying processes. The approach is applicable to any spatially explicit pairwise data, including genetic, morphological or ecological distance or similarity of individuals, populations and ecosystems. To exemplify possible applications of this approach, we analysed microsatellite genotypes of 1,530 brown bears from Sweden and Norway. 3. The variogram approach identified two scales at which population structure was strongest, thus indicating two different scale-dependent processes: home-rangerelated processes at scales <35 km, and subpopulation division at scales >98 km. On the basis of this, we performed a scale-explicit analysis of genetic structure using DResD analysis and compared the results with those obtained by the Bayesian clustering implemented in structure. 4. We found that the genetic cluster identified in central Scandinavia by Structure is caused by IBD, with distinct gene flow barriers to the south and north. We discuss possible applications and research perspectives to further develop the approach.