Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2023

Til dokument

Sammendrag

Industrial-scale garage dry fermentation systems are extremely nonlinear, and traditional machine learning algorithms have low prediction accuracy. Therefore, this study presents a novel intelligent system that employs two automated machine learning (AutoML) algorithms (AutoGluon and H2O) for biogas performance prediction and Shapley additive explanation (SHAP) for interpretable analysis, along with multiobjective particle swarm optimization (MOPSO) for early warning guidance of industrial-scale garage dry fermentation. The stacked ensemble models generated by AutoGluon have the highest prediction accuracy for digester and percolate tank biogas performances. Based on the interpretable analysis, the optimal parameter combinations for the digester and percolate tank were determined in order to maximize biogas production and CH4 content. The optimal conditions for the digester involve maintaining a temperature range of 35–38 °C, implementing a daily spray time of approximately 10 min and a pressure of 1000 Pa, and utilizing a feedstock with high total solids content. Additionally, the percolate tank should be maintained at a temperature range of 35–38 °C, with a liquid level of 1500 mm, a pH range of 8.0–8.1, and a total inorganic carbon concentration greater than 13.8 g/L. The software developed based on the intelligent system was successfully validated in production for prediction and early warning, and MOPSO-recommended guidance was provided. In conclusion, the novel intelligent system described in this study could accurately predict biogas performance in industrial-scale garage dry fermentation and guide operating condition optimization, paving the way for the next generation of intelligent industrial systems.

Sammendrag

"Mandelpoteter" handler om et ungt ektepar på Engeløya i Steigen kommune, Nordland som bl.a. har lykkes med å etablere konseptet "minimandel" i dagligvarekjeden Coop. Innslaget er en del formidlingen av NIBIO-prosjektet "Den nordnorske bonden".

Til dokument

Sammendrag

The aim of this chapter is to summarize dietary measures to mitigate methane at animal level. The chapter briefly summarizes methane measurement techniques. The focus is on the mitigation potential studied in vivo, but when such data were not available, in vitro measurements were included. The chapter covers main dietary ingredients such as forage quality, inclusion of concentrate, grazing management and inclusion of primary (e.g. lipids) and secondary (e.g. tannins) plant compounds as well as chemical inhibitors (e.g. 3-NOP) to the diet. This chapter can be used as a guidance on what to use, at which concentrations in the diets levels (farmers) and how to quantify the effect (researchers).