Publikasjoner
NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.
2025
Forfattere
Mirjana SadojevicSammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Forfattere
Anita SønstebySammendrag
Det er ikke registrert sammendrag
Forfattere
Anita SønstebySammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Forfattere
Katrine Marie Brynildsrud Peter Horvath Michael Angeloff Wenche Dramstad Adam Eindride Naas Kerstin Potthoff Anders BrynSammendrag
Expanding cities and urban densification is one of the major threats to biodiversity, ecosystem services and human welfare. Using Oslo, the capital city of Norway, as a case study this study addresses the following questions: (i) What vegetation changes have occurred between 1980s and 2021 and to what extent? (ii) What are the potential consequences of documented changes for biodiversity and other functions of green spaces? (iii) What future direction is the present development plan aiming for? To answer these questions, detailed vegetation maps (1:10 000) of Oslo from around 1980s were remapped in situ in 2021. We present results on land cover transformations, area statistics, and analyses of ecological impacts using landscape metrics. Our results document that large areas previously covered by vegetation types and cultivated land have been lost to urban densification. Housing dominated the new use. This loss of areas with vegetation types will affect ecosystem diversity negatively. On average, the total area and the mean patch area of each vegetation type decreased, whereas the mean Euclidean nearest-neighbor distance increased. These changes have lowered connectivity and increased fragmentation. Despite explicitly stated aims, previous efforts to reduce loss of areas with high biodiversity and maintain urban green spaces have not succeeded, and the planned future urban development indicates that a further decrease will follow in the next decades.
Forfattere
Begüm Bilgiç Thea Os Andersen Getachew Birhanu Abera Michal Sposob Lu Feng Svein Jarle HornSammendrag
Syngas biomethanation represents a promising pathway to convert recalcitrant feedstocks into biomethane. However, the hydrogen (H2) content in syngas is often insufficient or fluctuates, which affects the overall performance. This study evaluated the effect of H2 addition on syngas conversion efficiency and microbial community dynamics using two trickle bed reactors (TBRs). One TBR was fed with syngas, while another received syngas supplemented with H2. Both TBRs demonstrated the feasibility of converting CO from syngas to methane, with the H2 supplemented TBR outperforming the syngas-only TBR. The H2 supplemented TBR achieved over 90 % conversion rate at a gas loading rate of 15 NL/Lreactor/d and reached peak methane production at a gas loading rate at 20 NL/Lreactor/d. Microbial community structure analysis revealed a dominance of Methanobacterium, a known thermophilic hydrogenotrophic methanogen. Although H2 addition enhanced performance, a decline in conversion efficiency at higher gas loading rates highlights the need for further optimization.
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag