Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2020

Til dokument

Sammendrag

Det er ikke registrert sammendrag

Sammendrag

The EU has developed a Directive on Sustainable Use of Chemical Pesticides (2009/128/EC) (SUD) that aims to enhance the use of non-chemical alternatives to pesticides like microbial plant protection products (PPP). The number of authorized microbial PPP for plant protection has increased globally during the last decade. There is, however, variation between different countries. Sweden and Denmark have for example each authorized 20 microbial PPP while Norway has only authorized four microbial PPP. Norway has also received significantly fewer applications for authorization of microbial PPP than the other Scandinavian countries. We explore possible explanations for the observed differences. Our results show that that the regulations in the three countries had similar requirements for the authorisation of microbial PPP. The size of the market is somewhat smaller in Norway than in Sweden and Denmark, and could therefore explain some of the differences. We suggest, however, that the most important explanation is implementation differences in terms of different decisions made in the authorization process. By comparing the authorization process for three microbial PPP in the Scandinavian countries, we found that Norway used more time for the product authorization decisions. Norway assess the same types of microbial PPP more restrictively with respect to environmental aspects and especially human health risks.

Til dokument

Sammendrag

Precision farming technologies were implemented into a commercial harrow to increase selectivity of weed harrowing in spring cereals. Digital cameras were mounted before and after the harrow measuring crop cover. Crop soil cover (CSC) was computed out of these two images. Eight field experiments were carried out in spring cereals. Mode of harrowing intensity was changed in four experiments by speed, number of passes and tine angle. Each mode was varied in five intensities. In four experiments, only intensity of harrowing was changed. Weed control efficacy (WCE) and CSC were measured immediately after harrowing. Crop recovery was assessed 14 days after harrowing. Modes of intensity were not significantly different. However, intensity had significant effects on WCE and CSC. Cereals recovered from 10% CSC, and selectivity was in the constant range at 10% CSC. Therefore, 10% CSC was the threshold for the decision algorithm. If the actual CSC was below 10% CSC, intensity was increased. If the actual CSC was higher than 10%, intensity was decreased. Image analysis, decision support system and automatic control of harrowing intensity by hydraulic adjustment of tine angle were installed on a controller mounted on the harrow. The new system was tested in an additional field study. Threshold values for CSC were set at 10%, 30% and 60%. Automatic tine angle adjustment precisely realised the three different CSC values with variations of 1.5% to 3%. This development contributes to selective weed control and supports farmers during harrowing.

Til dokument

Sammendrag

Tørkesommeren 2018 ga fôrkrise og viser at det er behov for mer kunnskap om fôrdyrking i ekstraordinære situasjoner. På Østlandet ble kornarealer høstet som grovfôr tidlig i juli for å avhjelpe fôrsituasjonen. Dette prosjektet undersøker hvordan resten av vekstsesongen best kan nyttes; altså, hvilke arter og frøblandinger av ettårige fôrvekster som er mest aktuelle ved sommersåing både med tanke som beite og til ensilering i rundballer. Spørsmålet kan også være aktuelt under andre forhold enn tørke, for eksempel etter overvintringsskader eller flomskader....