Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2007

Sammendrag

Innlegget ga en presentasjon i utfordringer i dyrking av proteinvekster (erter, åkerbønne, lupiner, vår- og høstoljevekster) i de klimatisk beste områdene på Østlandet

Sammendrag

Filtralite P® and shellsand as ideal constructed wetland substrates have been tested for their P sorption capacity, both with batch and column experiments. Two columns were filled with Filtralite P® and one column with shellsand. The shellsand (SSPS) and one of the Filtralite P® columns (FLSP) were loaded with a synthetic P solution, while the second Filtralite P® column (FLWW) was loaded with secondary wastewater. Ca, Mg, pH and the P concentrations were measured in the inlet and the 7 outlets along the height of the three vertical upflow columns for up to 303 days. An overall P removal rate of 92, 91 and 54% was measured in the columns SSPS, FLWW and FLPS, respectively, for the entire experimental period. The comparison of FLWW and FLPS showed that FLWW kept its high P removal efficiency (91%) throughout the experimental period while the removal efficiency of FLPS decreased fast after reaching the 1 ppm effluent P concentration. The competition of other negative ions and the development of biofilm did not have a negative effect on P removal from wastewater. The batch experiments showed a better sorption capacity of Filtralite P® at low initial concentrations, while for high initial concentrations the shellsand sorbed more. Shellsand had, however, a higher sorption capacity in batch experiments with used column material and high initial P concentrations. The results from both the batch and the column experiment suggest that the shellsand has a more durable P sorption capacity than the Filtralite P® material, possibly due to the persistent high concentrations of Ca in the shellsand.

Sammendrag

Despite the fact that creosote mainly consists of polycyclic aromatic hydrocarbons (PAHs), more polar compounds like phenolics, benzenes and N-, S-, O-heterocyclics dominate the groundwater downstream from creosote-contaminated sites. In this study, bioassay-directed fractionation, combined with fullscan GC-MS, identified organic toxicants in creosote-contaminated groundwater. An organic extract of creosote-contaminated groundwater was fractionised on a polar silica column using high performance liquid chromatography (HPLC), and the toxicity of the fractions was measured by the Microtox®-bioassay. PAHs, which comprise up to 85% of pure creosote, accounted for only about 13% of total toxicity in the creosote-contaminated groundwater, while methylated benzenes, phenolics and N-heterocyclics accounted for ca. 80% of the measured toxicity. The fraction containing alkylated quinolines was the most toxic single fraction, accounting for 26% of the total measured toxicity. The results imply that focus on PAHs may underestimate risks associated with creosote-contaminated groundwater, and that environmental risk assessment should focus to a higher degree on substituted PAHs and phenolics because they are more toxic than the unsubstituted ones. Additionally, benzenes and N-heterocyclics (e.g. alkylated quinolines) should be assessed.