Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2018

Til dokument

Sammendrag

Several studies have shown the positive effect of nitrogen fertilization on conifer growth. In young Norway spruce (Picea abies) stands, an additional effect of including a mixture of other nutrients has often, but not always, been found. We studied effects of repeated fertilization in 28 stands with young Norway spruce in central Norway. The treatments consisted of plots without nutrient addition (Control), fertilization with 150 kg N ha−1 (150 N), and fertilization with 150 kg N plus addition of P, K, Mg, B, Mn and Cu (150 N + mix), repeated three times with approximately eight years interval. There was a clear positive effect on volume increment of the 150 N and 150 N + mix treatments compared to Control, and the effect was significantly higher for 150 N + mix than for 150 N. Fertilization had a stronger effect in the first fertilization period than in the second, while the third period was intermediate. The effect of 150 N + mix was strongest at plots > 300 m a.s.l. However, this correlation may be due to geological conditions rather than elevation. Further studies are needed to find out under which edaphic conditions a nutrient mixture will increase growth substantially in young spruce stands.

Til dokument

Sammendrag

Due to the increasing relevance of analyzing water consumption along product life cycles, the water accounting and vulnerability evaluation model (WAVE) has been updated and methodologically enhanced. Recent data from the atmospheric moisture tracking model WAM2-layers is used to update the basin internal evaporation recycling (BIER) ratio, which denotes atmospheric moisture recycling within drainage basins. Potential local impacts resulting from water consumption are quantified by means of the water deprivation index (WDI). Based on the hydrological model WaterGAP3, WDI is updated and methodologically refined to express a basin’s vulnerability to freshwater deprivation resulting from the relative scarcity and absolute shortage of water. Compared to the predecessor version, BIER and WDI are provided on an increased spatial and temporal (monthly) resolution. Differences compared to annual averages are relevant in semiarid and arid basins characterized by a high seasonal variation of water consumption and availability. In order to support applicability in water footprinting and life cycle assessment, BIER and WDI are combined to an integrated WAVE+ factor, which is provided on different temporal and spatial resolutions. The applicability of the WAVE+ method is proven in a case study on sugar cane, and results are compared to those obtained by other impact assessment methods.