Publikasjoner
NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.
2018
Sammendrag
Det er ikke registrert sammendrag
Forfattere
Aina Lundon RussenesSammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Forfattere
Åshild Taksdal Randby Elisabet Nadeau Linda Karlsson Erik Brodshaug Astrid JohansenSammendrag
Total tract apparent digestibility of early dough and hard dough stage of maturity harvested Whole Crop Wheat by Dairy cows was examined in a latin square experimental design. The Whole Crop wheat was ensiled in big bales. The silage was either crushed or not crushed prior to feeding. The starch was completely harvested, regardless of stage of maturity or Processing.
Forfattere
Åshild Taksdal Randby Elisabet Nadeau Linda Karlsson Erik Brodshaug Astrid JohansenSammendrag
Total tract apparent digestibility of early dough and hard dough stage of maturity harvested Whole Crop Wheat by Dairy cows was examined in a latin square experimental design. The Whole Crop wheat was ensiled in big bales. The silage was either crushed or not crushed prior to feeding. The starch was completely harvested, regardless of stage of maturity or Processing.
Sammendrag
The hydrological processes associated with vegetation and their effect on slope stability are complex and so difficult to quantify, especially because of their transient effects (e.g. changes throughout the vegetation life cycle). Additionally, there is very limited amount of field based research focusing on investigation of coupled hydrological and mechanical influence of vegetation on stream bank behavior, accounting for both seasonal time scale and different vegetation types, and none dedicated to marine clay soils (typically soil type for Norway). In order to fill this gap we established hydrological and mechanical monitoring of selected test plots within a stream bank, covered with different types of vegetation, typical for Norwegian agricultural areas (grass, shrubs and trees). The soil moisture, groundwater level and stream water level were continuously monitored. Additionally, soil porosity and shear strength were measured regularly. Observed hydrological trends and differences between three plots (grass, tree and shrub) were analysed and formed the input base for stream bank stability modeling. We did not find particular differences between the grass and shrub plot but we did observe a significantly lower soil moisture content, lower soil porosity and higher shear strength within the tree plot. All three plots were stable during the monitoring period, however modeling scenarios made it possible to analyse potential differences in stream bank stability under different vegetation cover depending on root reinforcement and slope angle.
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Forfattere
Anne Linn Hykkerud Inger Martinussen Ivan Paponov Mette Thomsen Eivind Uleberg Laura JaakolaSammendrag
Rhodiola rosea is a perennial flowering plant with a long history as a medicine plant. The plant contain a range of bioactive compounds including salidroside, rosavin, rosarian and rosin. Some of the compounds are characterized as adaptogens, meaning they can increase the body’s resistance to various stressors. An increased demand for better pharmaceuticals has stimulated the development of new methods for agricultural as well as in vitro cultivation of medicinal plants. A new technology, called rhizosecretion of biologically active chemicals, can provide a continuous supply of biologically active compounds over the lifetime of plants. The plants will then be grown under controlled conditions. In order to increase the production of bioactive compounds in Rhodiola rosea under these conditions it is therefore hypothesized that the biosynthesis can be upregulated by growing it under specific temperature and light quality treatments. An experiment with different light and temperature regimes was established for optimal accumulation of biologically active compounds. Four different clones of Rhodiola rosea were grown under three different light conditions (red, blue and white) combined with two different temperatures (9 and 18 °C) for three weeks. The gene expression of Tyrosine decarboxylase (TyrDC), found to have a key role in the biosynthesis of salidroside, were investigated. In addition, the content of various bioactive compounds were quantified before and after treatment. The results indicate that use if high producing clones is most important for high production and that there is a short-term upregulation during blue light treatment. During the three-week treatment, there was no significant effect of the temperature treatments.