Publikasjoner
NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.
2019
Sammendrag
Det er ikke registrert sammendrag
Forfattere
Finn-Arne HaugenSammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Forfattere
Finn-Arne HaugenSammendrag
Det er ikke registrert sammendrag
Forfattere
Finn-Arne HaugenSammendrag
Det er ikke registrert sammendrag
Forfattere
Eva BrodSammendrag
Det er ikke registrert sammendrag
Forfattere
Eva BrodSammendrag
Det er ikke registrert sammendrag
Vitenskapelig kapittel – Recent developments in protective production of sweet cherry
Mekjell Meland
Forfattere
Mekjell MelandSammendrag
Sweet cherry production worldwide is grown in the open land. Production technique is more or less similar with scions grafted on dwarfing and semi-dwarfing rootstock and trees arranged in single rows. Sweet cherries can be grown in Norway in areas with suitable local climatic conditions up to 60°N. All orchards have high density planting systems and are rain covered. Rain-induced fruit cracking in cherries remains a problem at an international level. The most common systems in Norway are multibay high tunnel systems and retractable rain covers. Covered orchard tunnel systems offer not only the advantage of rain exclusion but also allow additional manipulation of the environment, tree growth and fruiting. In general, sweet cherry high tunnel production gives increased yields of larger fruit than in the open land, but investment costs are higher. This overview article describes results from different experiments about high tunnels sweet cherry production mainly conducted at Nibio Ullensvang, Norway during the last ten years.
Sammendrag
Understanding the quality of new raw material sources will be of great importance to ensure the development of a circular bioeconomy. Building up quality understanding of wood waste is an important step in this development. In this paper we probe two main questions, one substantial and one theoretical: What different understandings of wood waste quality exist and what significance do they have for the recycling and re-use of this waste fraction? And, what is the evolution of knowledge and sustainable practices of wood waste qualities a case of? The analysis is based on diverse perspectives and forms of methods and empirical material. Studies of policy documents, regulations, standards, etc. have been reviewed to uncover what kind of measures and concepts that have been important for governing and regulating wood waste handling. Interviews concerning wood and wood waste qualities have been conducted with key informants and people visiting recycling and waste management stations in Oslo and Akershus in Norway. By studying quality conceptions through the social birth, production, life, end-of-life and re-birth of wood products, we analyse socio-cultural conditions for sustainability. Furthermore we show how the evolution of knowledge and sustainable practices of wood waste qualities, in the meeting with standards and regulations, is a case of adaptation work in the evolution of Norwegian bioeconomy.
Forfattere
Jie Zhang Shaoqiang Ni Wenjun Wu Xiao Huang Hongqiang Jiang Qingquan Li Jinnan Wang Guofeng Wu Conrad Zorn Chaoqing YuSammendrag
China is continually seeking to improve river water quality. Implemented in 1996, the total pollutant load control system (TPLCS) is a regulatory strategy to reduce total pollutant loads, under which a Pollutant Discharge Permit (PDP) program tracks and regulates nutrient inputs from point source polluters. While this has been promising, the input-response relationship between discharge permits and water quality targets is largely unclear – especially in China's large and complex river basins. In response, this study involved a quantitative analysis method to combine the water quality targets of the 12th Five-Year Plan (2011–2015) with allocated PDPs in the Nenjiang River Basin, China. We demonstrated our approach by applying the Soil and Water Assessment Tool (SWAT) to the Nenjiang River Basin for hydrological and water quality simulation. Ammonia nitrogen (NH3-N) was used as the primary water quality indicator. Modelling indicated that only one control section in the wider river basin did not achieve the water quality target, suggesting that the TPLCS is largely effective. The framework should be applied in other basins to study the effectiveness of PDP policies, advise further updates to the TPLCS, and ultimately aim to achieve freshwater quality targets nationally.