Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2019

Sammendrag

Reindeer-train-collisions (RTC) are a challenge for Norwegian society and the northern Norwegian train company Bane NOR with regard to animal welfare, wildlife ecology, animal husbandry, reindeer herding and the working environment for train drivers and employees of Bane NOR. On behalf of Bane NOR the Norwegian Institute of Bioeconomy Research (NIBIO) investigated putative technological solutions to improve RTCs. The study is a result of literature research, interviews with Bane NOR employees, reindeer herders, researchers, companies and road administration project leaders and an analysis of Bane NOR´s own database of animal-train-collisions. The RTC records of the last 11 years (jan 2008 – dec 2018) revealed that prioritizing preventive measures against collisions with female reindeer along the Saltfjellet region during winter, especially during the Arctic night, are most promising. This also happens to be the most damaging time of the year for reindeer herders as they struggle to find damaged animals in the dark. Expensive and timeconsuming search efforts are a major concern with regard to animal welfare. Additionally, damaged animals are often – if at all – found long after the accident and can not be brought into Connection with a specific RTC, i.e. the herders can not claim monetary compensation…….

Sammendrag

Denne rapporten oppsummerer Sørhjort – merke- og utviklingsprosjekt for hjort i Agder og Telemark (2015-2019). Prosjektets mål har vært å utvikle kunnskap om hjortens arealbruk på Sørlandet og i Telemark til grunnlag for hjorteforvaltningen i regionen. Rapporten presenterer resultatene fra prosjektet.

Sammendrag

NIBIO har på oppdrag av Osen kommune utført taksering av elgbeite i de skogkledde delene av kommunen i juni 2019, for å kunne si noe om beitetilbud og beitepress. Vi fant at Osen har om lag like tett med beitetrær som andre områder vi har taksert i Sør-Norge, men bare halvparten så tett som nærliggende Stjørdal. Bjørk utgjør nesten alt buskbeitet, både i treantall og skuddproduksjon. Beiteplanter i feltsjiktet viser liten variasjon i Osen, men dekningen av blåbær – en viktig beiteplante – er som gjennomsnittet for Sør-Norge. Beitetilbudet varierer mye mellom områder i kommunen. Praktisk talt alt beite finnes i dalsidene ned mot bygda. På høydedragene er det få beiteplanter for elg. Kommunen har samlet sett et meget høyt beitepress, og trolig over også bjørkas tålegrense. Det er lite av andre lauvarter i området, så et svekket bjørkebeite kan ha stor betydning for fremtidig beiteproduksjon. Noe uventet fant vi generelt lavt beitepress på furu. Det kan ha sammenheng med at furu i Osen vokser på særlig næringsfattig mark, og befinner seg på høydedragene, som er mindre attraktive for elg vinterstid. Vi har grovt estimert nåværende ernæringsmessige bæreevne i Osen til å være maks 1.0 elg/km2 (bestand etter jakt). Sett og felt elg statistikken indikerer at bestanden etter jakt siste 5 år har vært opp mot 1.4 elg/km2, og at den er svakt økende (8% per år).

Til dokument

Sammendrag

Tap av dyr er en utfordring og et sentralt tema i norsk tamreindrift. Dette kunnskapsgrunnlaget beskriver status for hva vi vet om tapsomfang, tapsårsaker og tapsammenhenger innen områdene tap av rein til rovvilt, sykdom, klimarelatert tap, påkjørsler og grunnet kumulative effekter. Videre setter den fokus på forebyggende tiltak og hvilke felt man trenger ytterligere kunnskapsbygging på. Gjennomgående mangler kunnskap om sammenhengene mellom de ulike årsaksfaktorene samt bedre dokumentasjon av det tidlige kalvetapet.

Til dokument

Sammendrag

Advantages of low input livestock production on large pastures, including animal welfare, biodiversity and low production costs are challenged by losses due to undetected disease, accidents and predation. Precision livestock farming (PLF) enables remote monitoring on individual level with potential for predictive warning. Body temperature (Tb) and heart rate (HR) could be used for early detection of diseases, stress or death. We tested physiological sensors in free-grazing Norwegian white sheep in Norway. Forty Tb sensors and thirty HR sensors were surgically implanted in 40 lambs and 10 ewes. Eight (27%) of the HR and eight (20%) of the Tb sensors were lost during the study period. Two Tb sensors migrated from the abdominal cavity in to the digestive system. ECG based validation of the HR sensors revealed a measurement error of 0.2 bpm (SD 5.2 bpm) and correct measurement quality was assigned in 90% of the measurements. Maximum and minimum HR confirmed by ECG was 197 bpm and 68 bpm respectively. Mean passive HR was 90 bpm (SD=13 bpm) for ewes and 112 bpm (SD=13 bpm) for lambs. Mean Tb for all animals was 39.6°C (range 36.9 to 41.8°C). Tb displayed 24-hour circadian rhythms during 80.7 % but HR only during 41.0 % of the studied period. We established baseline values and conclude that these sensors deliver good quality. For a wide agricultural use, the sensor implantation method has to be further developed and real-time communication technology added.

Til dokument

Sammendrag

Citizen science is sometimes described as "public participation in scientific research," or participatory monitoring. Such initiatives help to bring research into, for example, the classroom and engage pupils in well-structured observations of nature in their vicinity. The learning and practising of observation may increase the understanding of complex conditions occurring in nature, related to biology, ecology, ecosystems functioning, physics, atmospheric chemistry etc. For school curricula and motivation of pupils, practical hands-on activities performed by school pupils themselves by using their own senses stimulate faster learning and cognition. For this, the EDU-ARCTIC project developed the monitoring system. All schools in Europe are invited to participate in a meteorological and phenological observation system in the schools’ surroundings, to report these observations on the web-portal and to have access to all the accumulated data. The schools and pupils become part of a larger citizen effort to gain a holistic understanding of global environmental issues. The students may learn to act as scientific eyes and ears in the field. No special equipment is needed. Reporting of observations should be made once a week in the monitoring system through the EDU–ARCTIC web-portal or the accompanying mobile app. A manual and a field guide on how to conduct observations and report are available through the web. Teachers may download reports containing gathered information and use them for a wide variety of subjects, including biology, chemistry, physics and mathematics. Meteorological parameters are reported as actual values: air temperature, cloud cover, precipitation, visibility reduction and wind force, in all 19 parameters. There are also reports on meteorological and hydrological phenomena, which occurred within the previous week: like lightning, extreme and other atmospheric phenomena, ice on lakes and rivers and snow cover, in all 23 parameters. The monitoring system also includes biological field observations of phenological phases of plants: birch, black adler, lilac, rowan, bilberry, rosebay willwherb and denadelion, in all 26 parameters. The occurrence of the first individual of five species of insects: bumblebee, mosquito, ant and 2 butterflies: common brimstone and European peacook, and the registration of the first appearance of the bird species: arctic tern, common cuckoo, white wagtail and crane. An app for the monitoring system has been developed in order to engage pupils more by making it more comprehensive to register the meteorology and the phenophases. Further, special webinars and Polarpedia (the project’s own online encyclopedia) entries are developed to strengthen the monitoring system. The EDU-ARCTIC monitoring system gathered more than 2000 reports from schools, with an average monthly number of more than 80 observations. They are freely available via the web-portal, but password access is needed in order to enter registrations and data.

Til dokument

Sammendrag

EDU-ARCTIC is an open-schooling project, funded by the EU for the years 2016-2019. The main aim is to attract young people (13-20 years old) to the natural sciences. The project is using Arctic to illustrate how research are carried out and put together in order to reveal what is happening in Arctic and how Europe ins influencing Arctic and how Arctic is influencing Europe. To achieve these goals, EDU-ARCTIC uses innovative online tools like webinars provided by scientists, Polarpedia (an online encyclopaedia) of scientific terms used in the EDU ARCTIC, as well as the monitoring system that is an open-access database including app for motivation on field registration. In addition, the EDU-ARCTIC offers Arctic Competitions, where pupils submit their idea for a science project as an essay, a poster or a video. During a three-step evaluation, a few lucky winners get the possibility to join scientists on expeditions to polar research stations during the summer. For school curricula and motivation of pupils, practical hands-on activities performed by school pupils themselves by using own senses stimulate to faster learning and cognition. The learning and practicing of observation increase the understanding of complex conditions occurring in nature, related to biology, ecology, ecosystems functioning, physics, atmospheric chemistry etc. For this, the EDU-ARCTIC project developed the monitoring system. All schools in Europe are invited to participate in a meteorological and phenological observation system in the schools’ surroundings, to report these observations on the web-portal and to have access to interesting accumulated data. The schools and pupils become a part of a larger effort to gain a holistic understanding of global environmental issues. The students may learn to act as scientific eyes and ears in the field. No special equipment is needed. Reporting of observations should be made once a week in the monitoring system at the EDU–ARCTIC web-portal. A manual and a field guide on how to conduct observations and report are available through the web. Teachers may download reports containing gathered information and use them for a wide variety of subjects, including biology, chemistry, physics and mathematics. Meteorological parameters are requested reported as actual values: air temperature, cloud cover, precipitation, visibility reduction and wind force, in all 19 parameters. It is also asking for reports on meteorological and hydrological phenomena, which occurred within the previous week: like lightning, extreme and other atmospheric phenomena, ice on lakes and rivers and snow cover, in all 23 parameters. The monitoring system is also include biological field observations, including plants, like Birch, Lilac, Bilberry in all 26 parameters. Then occurrence of first individual of five species of insects like Bumble bee, Mosquito, Ant and butterfly, and then registration of first appearance of the bird species Arctic tern, Common Cuckoo, White wagtail and Crane. An app for the monitoring system has been developed in order to engage pupils more by making it more comprehensive to register the meteorology and the phenophases. Further, special webinars and polarpedia entries are developed to strengthen the monitoring system. The web-portal is open source but password access is needed in order to enter registrations. keywords: observation system, natural science, interdisciplinary, stem.

Til dokument

Sammendrag

EDU-ARCTIC is an open-schooling project, funded by the EU for the years 2016-2019 and managed by scientists, nature educators and IT technicians. The main aim is to attract young people (13-20 years old) to the natural sciences. Further, to raise awareness of how everything in nature is connected, and that STEM education therefore in part must be interdisciplinary across normal school curricula. To achieve these goals, EDU-ARCTIC uses innovative online tools with open-access, combined with nature expeditions. Four main modules complement each other, but can also be used independently: 1) Webinars, where scientists conduct online lessons about their own field of expertise. The lessons comes as packages with worksheets and online games. The lessons brings youth close to scientists. They can ask questions what it means to work with science. It is also a valuable tool for teachers to brush up their STEM knowledge and get inspiration for their own teaching. 2) Polarpedia, which is an online encyclopaedia of scientific terms used in the webinars. The science is kept easy-to-grasp, with the aim to stimulate the pupils’ curiosity to look for more information. 3) Monitoring system, which uses citizen science and the project’s own app to record observations of meteorology and phenology. Observations are open for everybody to use in their own teachings. 4) Arctic Competitions, which is the module that has engaged the pupils the most. They submit their idea for a science project in late autumn, work with the project over the winter and present it in spring as an essay, a poster or a video. Teachers come up with innovative ways to fit this work into the normal curricula. A few lucky winners get to join scientists on expeditions to polar research stations. After 2.5 years, EDU-ARCTIC has engaged at least 1093 teachers from 58 countries. There is a language barrier for some teachers, and it is difficult to fit webinars into the school timetable. However, the challenges are minor compared to the interdisciplinary success of having teachers meet across countries and curricula. Here we illustrate this in detail by presenting a way of interdisciplinary teaching (“the beauty of poetry and maths”) developed by one of the teachers in the project, Mr. Francisco José Gómez Senent. Starting from a single poem published in Nature, it innovatively combines mathematics, literature, history and linguistic competence. The teacher originally used it to stimulate curiosity about the aesthetic criterion in science. Science is not only about facts! The approach can be generalized to cover a wide range of curricula, and different teachers can use it in a team effort across classes. Conclusion: The EDU-ARCTIC project has demonstrated that letting teachers meet across countries and teaching fields facilitates inspiring and innovative cross-overs in the normal school curricula. When teachers are inspired we believe it creates a happy teacher – happy teaching effect. keywords: interdisciplinary, natural science, open schooling, research, transdisciplinary.