Publikasjoner
NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.
2014
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Forfattere
Ann Katrin Holtekjølen Stine Gregersen Vhile Stefan Sahlstrøm Svein Halvor Knutsen Anne Kjersti Uhlen Mauritz Åssveen Nils Petter KjosSammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
In an attempt to discern stochastic and deterministic parts of measured signals, we analyze time series from the viewpoint of ordinal pattern statistics. After choosing a suitable embedding dimension $D$, the occurrencies of all $D!$ patterns form a probability distribution $P$. The latter is input to information and complexity functionals describing, e.g., chaotic regimes or stochastic properties due to long-range correlations. Here, we use an information quantifier which is local in pattern probability space, the Fisher information $F$. This is calculable only after fixing a pattern coding scheme, i.e. numbering each and every pattern. It has been demonstrated that $F$ discerns different dynamic regimes for the logistic map to a certain extent; however, this depends on the details of the coding scheme. Here, we seek to find an optimal coding scheme for long-range correlated stochastic processes, mimicking many records e.g. from the geosciences. To increase the contrast between colored noise and deterministic processes, $F$ should be minimal for the former. Structurally similar ordinal patterns should be located adjacent to each other. Similarity is related to the number of inversions in the respective patterns. In practical terms, it is impossible to try all $D!!$ coding schemes whenever$D > 3$; however, we demonstrate a classification of coding schemes into equivalence classes based on the number of "jumps" in the patterns. These are used to improve the Keller and Lehmer coding schemes. The approach has a potential to provide an analytical understanding of the Fisher information for stochastic processes. Results for these optimizations will be shown for both the logistic map and colored ($k$-) noise. As a byproduct, an innovative method to estimate the scaling exponent $k$ emerges. Finally, we comment shortly on the importance of finite size effects, which is always an issue when dealing with observed data.
Forfattere
Liang Wang Janka DibdiakovaSammendrag
Woody biomass from the forest sector is an abundant resource for renewable energy generation. Conventional woody biomass materials such as timber and stem are normally high quality solid fuels for combustion applications in terms of ash related operational problems. Recently, new raw woody materials such as forest residue are gaining interests for energy production purpose. Forest residue is the remaining fraction after harvest and outtake of the wood timber, including tree tops, branches and barks. Compared to conventional woody biomass, the forest residue has a wide variation of ash content and concentration of ash forming matters. The aim of this work was to characterize and investigate different parts from Norway spruce trees regarding ash content, ash composition and ash melting and slagging behaviors. Different parts from spruce tree were studied in present work including stem wood, bark, branch and twigs. The ash content and ash melting temperature of the four fuel samples were measured through following standard procedures. Concentrations of main ash forming elements were analyzed by an inductively coupled plasma optical emission spectroscopy (ICP-OES). The ashes from stem wood, bark and twigs were further investigated by a scanning electron microscopy equipped with energy dispersive X-Ray analysis (SEMEDX) and X-Ray diffractometry (XRD). The results showed that the branches and twigs contain higher contents of ash forming matters than that of the stem wood. Chemical compositions of ashes from four parts of the spruce tree are dominated by Ca, K, and Si. The K and Na contents in the branches and twigs are significantly higher than that of stem wood and bark, indicating high tendency of ash melting and slagging. The melting points of ashes from branch and twigs were 100-200 °C lower than those of the ashes from stem wood and bark, respectively. SEM-EDX and XRD analysis, melting of ashes from branch and twigs are mainly attributed to formation and fusion of low temperature melting alkali silicates. Copyright © 2014,AIDIC Servizi S.r.l.
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag
Sammendrag
Det er ikke registrert sammendrag