Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2018

Til dokument

Sammendrag

Acetophenones are phenolic metabolites of plant species. A metabolic route for the biosynthesis and release of 2 defence‐related hydroxyacetophenones in white spruce (Picea glauca) was recently proposed to involve 3 phases: (a) biosynthesis of the acetophenone aglycons catalysed by a currently unknown set of enzymes, (b) formation and accumulation of the corresponding glycosides catalysed by a glucosyltransferase, and (c) release of the aglycons catalysed by a glucosylhydrolase (PgβGLU‐1). We tested if this biosynthetic model is conserved across Pinaceae and land plant species. We assayed and surveyed the literature and sequence databases for possible patterns of the presence of the acetophenone aglycons piceol and pungenol and their glucosides, as well as sequences and expression of Pgβglu‐1 orthologues. In the Pinaceae, the 3 phases of the biosynthetic model are present and differences in expression of Pgβglu‐1 gene orthologues explain some of the interspecific variation in hydroxyacetophenones. The phylogenetic signal in the metabolite phenotypes was low across species of 6 plant divisions. Putative orthologues of PgβGLU‐1 do not form a monophyletic group in species producing hydroxyacetophenones. The biosynthetic model for acetophenones appears to be conserved across Pinaceae, whereas convergent evolution has led to the production of acetophenone glucosides across land plants.

Til dokument

Sammendrag

Throughout history, man has strongly utilized and affected forest genetic resources in Europe. From an evolu-tionary perspective deforestation/fragmentation (→genetic drift), transfer of seeds and plants to new environ-ments (→mainly gene flow) and selective logging (→selection) are most relevant and have been particularlyaddressed in this review. In contrast to most conifers, broadleaved tree populations have been especially reducedby historic fragmentation, and consequently, the related genetic effects have been possibly more pronounced.Widespread wind-pollinated species with wind/animal dispersed seeds appear to be more resilient to frag-mentation than species with e.g. small geographic ranges and gravity dispersed seeds. In addition, naturallyfragmented populations in the range margins may be more vulnerable than central populations as conditions forgene flow are generally impaired in peripheral areas. Traits important for adaptation (e.g. bud burst, bud set) arecontrolled by many genes, and as a corollary of fragmentation such genes are lost at a low rate. Large scalecommercial translocation of seeds and plants for forestry purposes applies mostly to conifers and dates backabout two centuries. Although many translocations have been successful in a forestry perspective, exposure tonew selective regimes has sometimes challenged the adaptive limits of populations and caused setbacks or evendiebacks of populations, as well as influencing neighbouring populations with maladapted genes (e.g. Scots pine,maritime pine, larch). Many tree species have substantial plasticity in fitness-related traits, which is vital forsurvival and viability following translocations. Selective logging has been practiced in Europe over the last twocenturies and implies removal of superior trees with respect to growth and quality. Such traits are partly undergenetic control. Consequent removal of superior trees may therefore have negative effects on the remaining genepool, but this effect will also be counteracted by extensive gene flow. Although humans have strongly affectedEuropean forest trees over the last millennia, we argue that they are still resilient from an evolutionary perspective.

Sammendrag

The effect of controlled nutrient feeding during the period of short day (SD) induction of flowering has been studied in three SD berry crops. An experimental system with standardized plant material grown with trickle fertigation in controlled environments was used. In strawberry, flowering was advanced and increased when an additional N pulse was given 1-2 weeks after commencement of a 4-week SD induction period, while the opposite resulted when the treatment was applied 2 weeks before start of SD. In blackcurrant, the highest flowering and yield were obtained when fertilization was applied shortly after the natural photoperiod had declined to the inductive length in September. While generous nutrient supply during spring and summer reduced berry soluble solids in blackcurrant, this was not observed with autumn fertilization. Autumn fertilization did not adversely affect plant winter survival or growth vigour in spring. Withdrawal of fertilization prior to, or at various stages during floral induction, did not significantly affect flowering and yield in raspberry, but marginally advanced flowering and fruit ripening.