Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2018

Til dokument

Sammendrag

Marine macrophytes are the foundation of algal forests and seagrass meadows–some of the most productive and diverse coastal marine ecosystems on the planet. These ecosystems provide nursery grounds and food for fish and invertebrates, coastline protection from erosion, carbon sequestration, and nutrient fixation. For marine macrophytes, temperature is generally the most important range limiting factor, and ocean warming is considered the most severe threat among global climate change factors. Ocean warming induced losses of dominant macrophytes along their equatorial range edges, as well as range extensions into polar regions, are predicted and already documented. While adaptive evolution based on genetic change is considered too slow to keep pace with the increasing rate of anthropogenic environmental changes, rapid adaptation may come about through a set of non-genetic mechanisms involving the functional composition of the associated microbiome, as well as epigenetic modification of the genome and its regulatory effect on gene expression and the activity of transposable elements. While research in terrestrial plants demonstrates that the integration of non-genetic mechanisms provide a more holistic picture of a species’ evolutionary potential, research in marine systems is lagging behind. Here, we aim to review the potential of marine macrophytes to acclimatize and adapt to major climate change effects via intraspecific variation at the genetic, epigenetic, and microbiome levels. All three levels create phenotypic variation that may either enhance fitness within individuals (plasticity) or be subject to selection and ultimately, adaptation. We review three of the most important phenotypic variations in a climate change context, including physiological variation, variation in propagation success, and in herbivore resistance. Integrating different levels of plasticity, and adaptability into ecological models will allow to obtain a more holistic understanding of trait variation and a realistic assessment of the future performance and distribution of marine macrophytes. Such multi-disciplinary approach that integrates various levels of intraspecific variation, and their effect on phenotypic and physiological variation, is of crucial importance for the effective management and conservation of seagrasses and macroalgae under climate change.

Til dokument

Sammendrag

The effects of climate change on oligotrophic rivers and their communities are almost unknown, albeit these ecosystems are the primary habitat of the critically endangered freshwater pearl mussel and its host fishes, salmonids. The distribution and abundance of pearl mussels have drastically decreased throughout Europe over the last century, particularly within the southern part of the range, but causes of this wide-scale extinction process are unclear. Here we estimate the effects of climate change on pearl mussels based on historical and recent samples from 50 rivers and 6 countries across Europe. We found that the shell convexity may be considered an indicator of the thermal effects on pearl mussel populations under warming climate because it reflects shifts in summer temperatures and is significantly different in viable and declining populations. Spatial and temporal modeling of the relationship between shell convexity and population status show that global climate change could have accelerated the population decline of pearl mussels over the last 100 years through rapidly decreasing suitable distribution areas. Simulation predicts future warming-induced range reduction, particularly in southern regions. These results highlight the importance of large-scale studies of keystone species, which can underscore the hidden effects of climate warming on freshwater ecosystems.

Til dokument

Sammendrag

Soil macroporosity affects field-scale water-cycle processes, such as infiltration, nutrient transport and runoff1,2, that are important for the development of successful global strategies that address challenges of food security, water scarcity, human health and loss of biodiversity3. Macropores—large pores that freely drain water under the influence of gravity—often represent less than 1 per cent of the soil volume, but can contribute more than 70 per cent of the total soil water infiltration4, which greatly magnifies their influence on the regional and global water cycle. Although climate influences the development of macropores through soil-forming processes, the extent and rate of such development and its effect on the water cycle are currently unknown. Here we show that drier climates induce the formation of greater soil macroporosity than do more humid ones, and that such climate-induced changes occur over shorter timescales than have previously been considered—probably years to decades. Furthermore, we find that changes in the effective porosity, a proxy for macroporosity, predicted from mean annual precipitation at the end of the century would result in changes in saturated soil hydraulic conductivity ranging from −55 to 34 per cent for five physiographic regions in the USA. Our results indicate that soil macroporosity may be altered rapidly in response to climate change and that associated continental-scale changes in soil hydraulic properties may set up unexplored feedbacks between climate and the land surface and thus intensify the water cycle.

Til dokument

Sammendrag

Ten elite maize inbred lines were selected based on all over per se performance and gray leaf spot disease reaction. Crosses were made in a 10×10 half-diallel mating design to produce 45 F1 single cross hybrids. The experiment was conducted at Bako national maize research center in 2015 and evaluation of the crosses were made at Bako and Jimma research centers in 2016 by using alpha lattice design with three replications including three commercial checks. All the necessary yield, agronomic and GLS disease data were recorded. In all the studied traits highly significant genotypic differences were observed indicating the existence of genetic variability among the crosses. Analysis of variance for the combining ability indicated GCA and SCA mean squares were significant at (P < 0.001) for all traits except for anthesis-silking interval, ear per plant, ear diameter, lesion length and width. The ratios of GCA/SCA variances for agronomic parameters and all disease parameters were greater than unity except for that of first disease appearance implying the predominance of additive gene actions. Among all inbred lines, P1, P4, P7, P8 and P9 were identified as desirable sources of resistant genes for GLS disease resistance with positive days of first disease appearance and negative disease incidence, severity and AUDPC values for GCA effects. From the analysis of epidemiological data and disease progress curves the Logistic model (R2=96.5) better described the disease progress curves than the Gompertz model (R2=92.5) indicating the presence of delayance in epidemics and the inflection point of the GLS. P1, P7 and P8 were identified as a good general combiners for yield, yield related traits and GLS disease parameters. Thus, these parents were recommended to be used in breeding programs with a purpose of developing high yielder and GLS resistant single cross hybrids. In conclusion this study identified potential high yielding and GLS resistant single cross hybrids (CML-395/CML-383, CML-395/Sc-22, CML-395/CML-197 and CML-383/CML-197). Therefore, it is recommended that these hybrids can be used for direct production where this disease is the most prevalent and/or for further breeding programs in generating novel hybrids for future use.

Til dokument

Sammendrag

The key factor for autonomous navigation is efficient perception of the surroundings,while being able to move safely from an initial to a final point. We deal in this paper with a wheeled mobile robot working in a GPS-denied environment typical for a greenhouse. The Hector Simultaneous Localization and Mapping (SLAM) approach is used in order to estimate the robots’ pose using a LIght Detection And Ranging (LIDAR) sensor. Waypoint following and obstacle avoidance are ensured by means of a new artificial potential field (APF) controller presented in this paper. The combination of the Hector SLAMand the APF controller allows themobile robot to performperiodic tasks that require autonomous navigation between predefined waypoints. It also provides themobile robot with a robustness to changing conditions thatmay occur inside the greenhouse, caused by the dynamic of plant development through the season. In this study, we show that the robot is safe to operate autonomously with a human presence, and that in contrast to classical odometrymethods, no calibration is needed for repositioning the robot over repetitive runs. We include here both hardware and software descriptions, as well as simulation and experimental results.

Til dokument

Sammendrag

Most horticultural crops are attacked by more than one insect pest. As broad-spectrum chemical control options are becoming increasingly restricted, there is a need to develop novel control methods. Semiochemical attrac- tants are available for three important horticultural pests, strawberry blossom weevil, Anthonomus rubi Herbst (Coleoptera: Curculionidae), European tarnished plant bug, Lygus rugulipennis Poppius (Hemiptera: Miridae) and raspberry beetle, Byturus tomentosus deGeer (Coleoptera: Byturidae). Traps targeting more than one pest species would be more practical and economical for both monitoring and mass trapping than traps for single-species. In this study we aimed to (1) improve the effectiveness of existing traps for insect pests in strawberry and raspberry crops by increasing catches of each species, and (2) test if attractants for two unrelated pest species could be combined to capture both in the same trap without decreasing the total catches. Field tests were carried out in four European countries and different combinations of semiochemicals were compared. A volatile from straw- berry flowers, 1,4 dimethoxybenzene (DMB), increased the attractiveness of the aggregation pheromone to both sexes of A. rubi. The host-plant volatile, phenylacetaldehyde (PAA), increased the attraction of female L. rugu- lipennis to the sex pheromone, and, in strawberry, there was some evidence that adding DMB increased catches further. Traps baited with the aggregation pheromone of A. rubi, DMB, the sex pheromone of L. rugulipennis and PAA attracted both target species to the same trap with no significant difference in catches compared to those single-species traps. In raspberry, catches in traps baited with a combination of A. rubi aggregation pheromone, DMB and the commercially available lure for B. tomentosus, based on raspberry flower volatiles, were similar to those in single-species traps. In both crops the efficiency of the traps still needs improvement, but the multi- species traps are adequate for monitoring and should not lead to confusion for the user as the target species are easy to distinguish from each other.