Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2023

Til dokument

Sammendrag

The Saimaa ringed seal (Pusa hispida saimensis) is endemic to Lake Saimaa in Finland. The subspecies is thought to have originated when parts of the ringed seal population of the Baltic region were trapped in lakes emerging due to postglacial bedrock rebound around 9000 years ago. During the 20th century, the population experienced a drastic human-induced bottleneck. Today encompassing a little over 400 seals with extremely low genetic diversity, it is classified as endangered. We sequenced sections of the mitochondrial control region from 60 up to 125-years-old museum specimens of the Saimaa ringed seal. The generated dataset was combined with publicly available sequences. We studied how genetic variation has changed through time in this subspecies and how it is phylogenetically related to other ringed seal populations from the Baltic Sea, Lake Ladoga, North America, Svalbard, and the White Sea. We observed temporal fluctuations in haplotype frequencies and loss of haplotypes accompanied by a recent reduction in female effective population size. In apparent contrast with the traditionally held view of the Baltic origin of the population, the Saimaa ringed seal mtDNA variation also shows affinities to North American ringed seals. Our results suggest that the Saimaa ringed seal has experienced recent genetic drift associated with small population size. The results further suggest that extant Baltic ringed seal is not representative of the ancestral population of the Saimaa ringed seal, which calls for re-evaluation of the deep history of this subspecies.

Til dokument

Sammendrag

The treatment of organic waste (OW) by anaerobic digestion (AD) conforms to the concept of sustainable development. But AD is facing the issue of low conversion rate. In this work, the photo-AD system using visible light (LED lamp) as the source was constructed and the performances and mechanism of N-doped carbon quantum dots (NCQD) were explored in the system for the first time. The results showed that 0.5 g/L NCQD promoted a 23.1 % increase in cumulative CH4 yield in the photo-AD system. Microbial analysis results showed that in photo-AD with NCQD, the dominant strain was Methanosarciniales, with an abundance of 69.0 %. Microbial activity and structural integrity tests showed that the microorganisms were not damaged by free radicals. In addition, NCQD increased the redox peak intensity of the CV curve and increased photocurrent intensity of photo-AD. Furthermore, it promoted an increase of 18.2 % (0.26 ± 0.03 μmol/mL) in ATP concentration. The photoelectrochemical analysis and quantitative analysis of functional genes results indicated that NCQD mainly promoted methanogenesis by providing photoelectrons. This promotion mechanism increased the copynumber (61,652.8 g−1) of EchA in photo-AD, rather than Vht and Hdr related to cytochrome. This work provided new strategies for the enhancement of AD and clarified potential mechanisms.