Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2023

Sammendrag

Virtual fencing (VF) is an alternative method to control livestock dispersal. This method consists of the use of animal wearable collars that employ auditory-electric pulse cues to deter animals from exiting their predefined containment zones. The study aimed to document skin defense (SkinM) and association learning mechanism (AssocM) in describing the conditioning behavior of the VF application. Nursing Brangus cows at the New Mexico State University’s Chihuahuan Desert Rangeland Research Center were allotted three days of free access to feeding areas (0.19ha) with VF-deactivated (VF-Off) or VF-Activated (VF-On) collars restricting one-third of the penned area. This training sequence was repeated twice (6-day/Period) with two replications (n=11 and 17cows). The VF collars communicated real-time animal positions at 15-minute intervals. ANOVA was used to compare daily-derived variables per cattle on the percentage of time spent within the containment and restricted zones (SkinM) and the number of auditory and electric pulses emitted during the VF-On configurations (AssocM). The VF-On treatment increased the percentage of time collared animals spent within the containment zone (98.4 vs.72.0 ±1.0 %Time;P<0.01) and reduced the percentage of time within the restricted zone (1.6 vs.28.0 ±1.0 %Time;P<0.01) compared to the VF-Off treatment. Exposure to VF-On in Period 1 triggered a greater frequency of auditory (1.8 vs.0.6 ±0.4;P<0.01) and electrical pulses (0.7 vs.0.2 ±0.2;P<0.01) than in Period 2. Results indicate that groups of cows learn rapidly to respond to VF boundaries by reducing the time spent within the restricted areas (SkinM) and relying increasingly on auditory cues to alter behavior (AssocM).

Sammendrag

Weeds affect crop yield and quality due to competition for resources. In order to reduce the risk of yield losses due to weeds, herbicides or non-chemical measures are applied. Weeds, especially creeping perennial species, are generally distributed in patches within arable fields. Hence, instead of applying control measures uniformly, precision weeding or site-specific weed management (SSWM) is highly recommended. Unmanned aerial vehicle (UAV) imaging is known for wide area coverage and flexible operation frequency, making it a potential solution to generate weed maps at a reasonable cost. Efficient weed mapping algorithms need to be developed together with UAV imagery to facilitate SSWM. Different machine learning (ML) approaches have been developed for image-based weed mapping, either classical ML models or the more up-to-date deep learning (DL) models taking full advantage of parallel computation on a GPU (graphics processing unit). Attention-based transformer DL models, which have seen a recent boom, are expected to overtake classical convolutional neural network (CNN) DL models. This inspired us to develop a transformer DL model for segmenting weeds, cereal crops, and ‘other’ in low-resolution RGB UAV imagery (about 33 mm ground sampling distance, g.s.d.) captured after the cereal crop had turned yellow. Images were acquired during three years in 15 fields with three cereal species (Triticum aestivum, Hordeum vulgare, and Avena sativa) and various weed flora dominated by creeping perennials (mainly Cirsium arvense and Elymus repens). The performance of our transformer model, 1Dtransformer, was evaluated through comparison with a classical DL model, 1DCNN, and two classical ML methods, i.e., random forest (RF) and k-nearest neighbor (KNN). The transformer model showed the best performance with an overall accuracy of 98.694% on pixels set aside for validation. It also agreed best and relatively well with ground reference data on total weed coverage, R2 = 0.598. In this study, we showed the outstanding performance and robustness of a 1Dtransformer model for weed mapping based on UAV imagery for the first time. The model can be used to obtain weed maps in cereals fields known to be infested by perennial weeds. These maps can be used as basis for the generation of prescription maps for SSWM, either pre-harvest, post-harvest, or in the next crop, by applying herbicides or non-chemical measures.

Sammendrag

This edited volume centers around the concept of BioCities, which aim to unify nature and urban spaces in order to reverse the effects of global climate change and inequity. Following this principle, the authors propose multiple approaches for sustainable city growth. The discussed concepts are not only relevant for newly constructed cities, but offer transformative perspectives for existing settlements as well. Placing nature at the forefront of city planning is not an entirely new concept, so the authors build on established ideas like the garden city, green city, eco-city, or smart city. All chapters aim to highlight aspects to develop a city that is a resilient nature-based socio-ecological system. Many of these concepts were formed in an effort to copy the best traits of a forest ecosystem: a home for many different species that build complex communities. Much like many of our forests, urban areas are managed by humans for multifunctional purposes, using living and abiotic components. This viewpoint helps to understand the potential and limitations of sustainable growth. With these chapters, the authors want to inspire planners, ecologists, urban foresters and decision makers of the future.

Sammendrag

Information on tree height-growth dynamics is essential for optimizing forest management and wood procurement. Although methods to derive information on height-growth information from multi-temporal laser scanning data already exist, there is no method to derive such information from data acquired at a single point in time. Drone laser scanning data (unmanned aerial vehicles, UAV-LS) allows for the efficient collection of very dense point clouds, creating new opportunities to measure tree and branch architecture. In this study, we examine if it is possible to measure the vertical positions of branch whorls, which correspond to nodes, and thus can in turn be used to trace the height growth of individual trees. We propose a method to measure the vertical positions of whorls based on a single-acquisition of UAV-LS data coupled with deep-learning techniques. First, single-tree point clouds were converted into 2D image projections, and a YOLOv5 (you-only-look-once) convolutional neural network was trained to detect whorls based on a sample of manually annotated images. Second, the trained whorl detector was applied to a set of 39 trees that were destructively sampled after the UAV-LS data acquisition. The detected whorls were then used to estimate tree-, plot- and stand-level height-growth trajectories. The results indicated that 70 per cent (i.e. precision) of the measured whorls were correctly detected and that 63 per cent (i.e. recall) of the detected whorls were true whorls. These results translated into an overall root-mean-squared error and Bias of 8 and −5 cm for the estimated mean annual height increment. The method’s performance was consistent throughout the height of the trees and independent of tree size. As a use case, we demonstrate the possibility of developing a height-age curve, such as those that could be used for forecasting site productivity. Overall, this study provides proof of concept for new methods to analyse dense aerial point clouds based on image-based deep-learning techniques and demonstrates the potential for deriving useful analytics for forest management purposes at operationally-relevant spatial-scales.

Til dokument

Sammendrag

The identification of individual tree logs along the wood procurement chain is a coveted goal within the forest industry. The tracing of logs from the sawmill back to the forest would support the legal and sustainable sourcing of wood, as well as increase the resource efficiency and value of harvested timber. In this work, using a dataset of thousands of Scots pine (Pinus sylvestris L.) log end images displaying varying perspectives, lighting, and aging effects, we develop and assess log identification methods based on deep convolutional neural networks. The estimated rank-1 accuracy of our final model on an independent test set of 99 logs is 84 and 91% when allowing for random rotations of the log ends and when keeping each log at approximately fixed orientation, respectively. We estimate the scaling of these methods up to a template pool size of 493 logs, which reveals a weak dependence of accuracy on pool size for logs at fixed orientation. The deep learning approach gives superior results to a classical local binary pattern method, and appears feasible in practice, assuming that pre-filtering of the log database can be leveraged depending on the use case and properties of the queried log image. We make our dataset publicly available.

Til dokument

Sammendrag

The ideal conditions for anaerobic digestion experiments with biochar addition are challenging to thoroughly study due to different experimental purposes. Therefore, three tree-based machine learning models were developed to depict the intricate connection between biochar properties and anaerobic digestion. For the methane yield and maximum methane production rate, the gradient boosting decision tree produced R2 values of 0.84 and 0.69, respectively. According to feature analysis, digestion time and particle size had a substantial impact on the methane yield and production rate, respectively. When particle sizes were in the range of 0.3–0.5 mm and the specific surface area was approximately 290 m2/g, corresponding to a range of O content (>31%) and biochar addition (>20 g/L), the maximum promotion of methane yield and maximum methane production rate were attained. Therefore, this study presents new insights into the effects of biochar on anaerobic digestion through tree-based machine learning.