Hopp til hovedinnholdet

Publikasjoner

NIBIOs ansatte publiserer flere hundre vitenskapelige artikler og forskningsrapporter hvert år. Her finner du referanser og lenker til publikasjoner og andre forsknings- og formidlingsaktiviteter. Samlingen oppdateres løpende med både nytt og historisk materiale. For mer informasjon om NIBIOs publikasjoner, besøk NIBIOs bibliotek.

2020

Sammendrag

Refotografering av Axel Lindahls 1886-bilder fra Jotunheimen, samt en beskrivelse av turisters, førere og DNTs virksomhet i fjellet i 1880-årene. Gjengitt i Fjukens Sommermagasin 2020.

Sammendrag

To siders oppslag om refotografering i UKL Norangsdalen-Hjørundfjord - bl.a. basert på bilder av Lindahl, Knudsen, Selmer og Wilse.

Sammendrag

Farmers in Northern Norway frequently experience winter damaged fields caused by ice encasement. The economic consequences are severe due to loss of fodder and costs with reestablishment of swards. It is therefore important to choose the best available varieties for the local climatic and environmental conditions. We tested eight Norwegian cultivars of timothy (Phleum pratense), for tolerance to ice encasement and their regrowth capacity. Both old and new cultivars, and cultivars with good overwintering capacity and less biomass production were tested against more productive cultivars with less overwintering capacity. The experiment was a semi-field setup and plants were established in pots which were placed outside. Half of the pots were covered with ice and half were kept under snow cover. During four months, pots were brought, once per month, into a greenhouse for thawing and measurement of biomass production under normal growth conditions. The results indicate that the old winter hardy cultivar ‘Engmo’ is least affected by ice encasement but produces little biomass. The joint Nordic cultivar ‘Snorri’ produced most biomass of all the cultivars after a treatment with ice cover. In conclusion, there is a large difference between cultivars in ice encasement tolerance, and ice cover affected regrowth capacity far more than snow cover

Til dokument

Sammendrag

Key message We identifed allelic variation at two major loci, QSnb.nmbu-2A.1 and QSnb.nmbu-5A.1, showing consistent and additive efects on SNB feld resistance. Validation of QSnb.nmbu-2A.1 across genetic backgrounds further highlights its usefulness for marker-assisted selection. Abstract Septoria nodorum blotch (SNB) is a disease of wheat (Triticum aestivum and T. durum) caused by the necrotrophic fungal pathogen Parastagonospora nodorum. SNB resistance is a typical quantitative trait, controlled by multiple quantitative trait loci (QTL) of minor efect. To achieve increased plant resistance, selection for resistance alleles and/or selection against susceptibility alleles must be undertaken. Here, we performed genetic analysis of SNB resistance using an eight-founder German Multiparent Advanced Generation Inter-Cross (MAGIC) population, termed BMWpop. Field trials and greenhouse testing were conducted over three seasons in Norway, with genetic analysis identifying ten SNB resistance QTL. Of these, two QTL were identifed over two seasons: QSnb.nmbu-2A.1 on chromosome 2A and QSnb.nmbu-5A.1 on chromosome 5A. The chromosome 2A BMWpop QTL co-located with a robust SNB resistance QTL recently identifed in an independent eightfounder MAGIC population constructed using varieties released in the United Kingdom (UK). The validation of this SNB resistance QTL in two independent multi-founder mapping populations, regardless of the diferences in genetic background and agricultural environment, highlights the value of this locus in SNB resistance breeding. The second robust QTL identifed in the BMWpop, QSnb.nmbu-5A.1, was not identifed in the UK MAGIC population. Combining resistance alleles at both loci resulted in additive efects on SNB resistance. Therefore, using marker assisted selection to combine resistance alleles is a promising strategy for improving SNB resistance in wheat breeding. Indeed, the multi-locus haplotypes determined in this study provide markers for efcient tracking of these benefcial alleles in future wheat genetics and breeding activities.